an_mui
- 47
- 0
Two points A and B are located on the ground a certain distance d apart. Two rocks are launched simultaneously from points A and B with equal speeds but at different angles. Each rock lands at the launch point of the other. Knowing that one of the rocks is launched at an angle \vartheta> 45 degrees with the horizontal, what is the minimum distance between the rocks during the flight? Express your answer in terms of d and \vartheta
Hm.. this is a very hard problem for me so I hope anyone could help me check this over, as there are lots of rooms for mistakes. Thanks in advance.
4 base equations that I used for solving:
(1) x = V_{0}cos\vartheta t
(2)V_{2x} = V_{0}cos\vartheta
(3)y = V_{0}sin\vartheta t + \frac{1}{2}(-g)(t)^2
(4)V_{2y} = V_{0}sin\vartheta + (-g)(t)
D^2 = (x_{2} - x_{1})^2 + (y_{2} - {y_{1})^2
Rock 1:
x_{1} = V_{0}cos \vartheta t
y_{1} = V_{0}sin \vartheta t - \frac{1}{2}gt^2
Rock 2:
x_{2} = d - V_{0}cos \phi t
y_{2} = V_{0}cos \phi t - \frac{1}{2}gt^2
cos \phi = cos(90 - \vartheta) = sin \vartheta
sin \phi = sin (90 - \vartheta) = cos \vartheta
x_{2} - x_{1} = d - V_{0}(cos \vartheta + sin \vartheta)t
y_{2} - y_{1} = V_{0}(cos \vartheta - sin \vartheta)t
Let A = d, B = -V_{0}(cos \vartheta + sin \vartheta) and c = V_{0}(cos \vartheta + sin \vartheta)
D^2 = (A + Bt)^2 + (Ct)^2
= A^2 + 2ABt + B^2t^2 + C^2t^2
= A^2 + 2ABt + (B^2 + C^2)t
Recall quadratic equation = ax^2 + bx + c
Let a = B^2 + C^2, b = 2AB and c = A^2
Minimum = vertex
x = \frac{-b}{2a}
... y_{min} = a(\frac{-b}{2a})^2 + b(\frac{-b}{2a}) + c
= \frac{ab^2}{4a^2} - \frac{b^2}{2a} + c
... d_{min} = \sqrt\frac{4A^2B^2 - 2(4A^2B^2) + A^2}{4(B+C)}
= \sqrt\frac{-A^2B^2 + A^2(B^2 + C^2)}{B^2 + C^2}
= \sqrt\frac{A^2C^2}{B^2 + C^2}
Hm.. this is a very hard problem for me so I hope anyone could help me check this over, as there are lots of rooms for mistakes. Thanks in advance.
4 base equations that I used for solving:
(1) x = V_{0}cos\vartheta t
(2)V_{2x} = V_{0}cos\vartheta
(3)y = V_{0}sin\vartheta t + \frac{1}{2}(-g)(t)^2
(4)V_{2y} = V_{0}sin\vartheta + (-g)(t)
D^2 = (x_{2} - x_{1})^2 + (y_{2} - {y_{1})^2
Rock 1:
x_{1} = V_{0}cos \vartheta t
y_{1} = V_{0}sin \vartheta t - \frac{1}{2}gt^2
Rock 2:
x_{2} = d - V_{0}cos \phi t
y_{2} = V_{0}cos \phi t - \frac{1}{2}gt^2
cos \phi = cos(90 - \vartheta) = sin \vartheta
sin \phi = sin (90 - \vartheta) = cos \vartheta
x_{2} - x_{1} = d - V_{0}(cos \vartheta + sin \vartheta)t
y_{2} - y_{1} = V_{0}(cos \vartheta - sin \vartheta)t
Let A = d, B = -V_{0}(cos \vartheta + sin \vartheta) and c = V_{0}(cos \vartheta + sin \vartheta)
D^2 = (A + Bt)^2 + (Ct)^2
= A^2 + 2ABt + B^2t^2 + C^2t^2
= A^2 + 2ABt + (B^2 + C^2)t
Recall quadratic equation = ax^2 + bx + c
Let a = B^2 + C^2, b = 2AB and c = A^2
Minimum = vertex
x = \frac{-b}{2a}
... y_{min} = a(\frac{-b}{2a})^2 + b(\frac{-b}{2a}) + c
= \frac{ab^2}{4a^2} - \frac{b^2}{2a} + c
... d_{min} = \sqrt\frac{4A^2B^2 - 2(4A^2B^2) + A^2}{4(B+C)}
= \sqrt\frac{-A^2B^2 + A^2(B^2 + C^2)}{B^2 + C^2}
= \sqrt\frac{A^2C^2}{B^2 + C^2}