kivarocket
- 5
- 0
Please help -- An ideal gas problem involving work on a mass
1. An ideal gas has a heat capacity of 20 J/(mol*K). One mole of the gas is in a cylinder and absorbs 1000 J of heat and lifts a 10 kg mass a vertical distance of 2 m while expanding. If the initial temperature of the gas is 300 K, what is the approximate final temperature of the gas?
2. Q = mcΔT, ΔE = Q-W
3. I thought this would be straightforward, but I'm not getting the correct answer of 340K. I thought that I could set Q=1000 J, plug in m and c, and solve for Tf. In this case, Tf = (Q/mc) + Ti. This gives me only about 305 K.
1. An ideal gas has a heat capacity of 20 J/(mol*K). One mole of the gas is in a cylinder and absorbs 1000 J of heat and lifts a 10 kg mass a vertical distance of 2 m while expanding. If the initial temperature of the gas is 300 K, what is the approximate final temperature of the gas?
2. Q = mcΔT, ΔE = Q-W
3. I thought this would be straightforward, but I'm not getting the correct answer of 340K. I thought that I could set Q=1000 J, plug in m and c, and solve for Tf. In this case, Tf = (Q/mc) + Ti. This gives me only about 305 K.