Please help -Dirac delta potential-, Hermitian Conjugate

enalynned
Messages
7
Reaction score
0
Please help! -Dirac delta potential-, Hermitian Conjugate

Im trying to solve problem 2.26 from Griffiths (1st. ed, Intro to Q.M.). Its about the allowed energy to double dirac potential. I came up with a final equation that is trancedental. (After I separate the even and odd solution of psi.) Am I on the right track?

Please refer to Griffiths book equation number 3.83. Now consider my arguments.

Let lc> = Tlb>, where T is an operator, then <cl = <bl T+, where T+ is the hermitian conjugate of T. One of the property of inner product is.

<alc> = <cla>*
thus
<alTlb> = <blT+la>*

In eqn. 3.83 of Griffiths there is no conjugation when T+ operates on la>...
Does this mean

<blT+la>* = <alT+lb> ?

where * means conjugate
thanks!
 
Last edited:
Physics news on Phys.org
Hermitian operator is just a special case of adjoints...
Sorry for the late reply ^^
 
:rolleyes: Is it always true that
<blT+la>* = <alT+lb>
regardless of T being Hermitian?
 
Of course not. Let's say you have

\langle b, T^{\dagger}a\rangle

That's equal to

\langle (T^{\dagger})^{\dagger}b, a\rangle

So you'd have to require that the adjoint of the adjoint should exist and moreover

T^{\dagger}b=(T^{\dagger})^{\dagger}b \ , \ \forall b\in D(T^{\dagger}) \and b\in D((T^{\dagger})^{\dagger})

If that happens, then you can employ Dirac's notation with bars. It's always true that an operator is included in its adjoint's adjoint, but for the adjoint it always have to be checked.

Daniel.
 
Last edited:
In the first edition of "Introduction to Quantum Mechanics" by Griffiths equation 3.83 he (Griffiths) states that a Hermitian Conjugate is an operator with the property

<alTb>=<T+alb> ... (1)

That is a Hermitian Conjugate (not necessarily Hermitian operator) is a "transformation T+ which, when applied to the first member of an inner product, gives the same result as if T itself had been applied to the second vector."

But from my previous arguments, I obtained

<alTlb>=<blT+la>* ... (2)

if i equate (1) and (2) i will have (if <alTlb> is the same as <alTb>)

<blT+a>*=<T+alb>...

notice that T+ operates on la> now.:confused:
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top