Please help me understand this tangent/parametric curve problem

  • Thread starter Thread starter frasifrasi
  • Start date Start date
  • Tags Tags
    Curve
frasifrasi
Messages
276
Reaction score
0
Ok, so we the question gives two finctions x(t) and y(t) and asks for the equation of the tangent line at t = 1.

I found the slope by evaluating dy/dx at 1, but how do I find the y-intercept?
 
Physics news on Phys.org
Can't you use the point (x(1),y(1)) to solve for the intercept?
 
yes, I can !
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top