1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Please Help. What is the antiderivative of e^arctan(x)?

  1. Jan 21, 2006 #1
    What is the antiderivative of earctan(x)?
    I cant seen to find this anywhere, although I suspect the answer would be pretty easy. This is the first problem of the first assignment in Calc 2. It is suposed to be review from Calc 1, but I cant figure it out.:surprised :grumpy: :yuck: :cry:
     
  2. jcsd
  3. Jan 21, 2006 #2

    StatusX

    User Avatar
    Homework Helper

    You can turn that into the integral of tan(u) eu, which doesn't have an integral expressible in terms of elementary functions, and so neither does your original function. Now if that was arcsin or arccos in the exponent, it'd be a different story.
     
    Last edited: Jan 21, 2006
  4. Jan 21, 2006 #3
    You're subvstitution is wrong, it would work if he had xearctan(x) but you set u = arctan(x) which means x = tan(u) but there is no multiplication between x and e in his problem so you can get tan(u) eu, but you could get sec2u eudu.
     
  5. Jan 21, 2006 #4

    StatusX

    User Avatar
    Homework Helper

    Right, and then I integrated by parts.
     
  6. Jan 21, 2006 #5
    Ah, yeah I see that now sorry about that.
     
  7. Jan 21, 2006 #6
    Thanks for your help. I did finally figure out the problem. It was a trick question, and I was not supposed to be able to figure out the antiderivitave. The whole problem was this:

    d/dx(S01earctan x)dx

    that "S" is supposed to be an integral sign.


    I eventually figured.. The integral of earctan x, however you figure it, would be a number, and then the derivative of the number is just zero. I am still curious about the antiderivative... is there nothing that you can take the derivative of, to get earctan x?
     
  8. Jan 21, 2006 #7

    StatusX

    User Avatar
    Homework Helper

    Unfortunately, most functions do not have "nice" antiderivatives. The classic example is the error function:

    [tex]\mbox{erf}(x) = \frac{2}{\sqrt{\pi}}\int_0^x e^{-t^2} dt[/tex]

    If we define elementary functions as exponentials, logs, algebraic functions (like polynomials and root extractions), and finite combinations (sums, products, etc) and compositions thereof (which, extending to complex numbers, allows you to include trigonometric functions and their inverses), then it can be proven there is no elementary function equivalent to the error function, nor to the antiderivative you've given here.
     
    Last edited: Jan 21, 2006
  9. Jan 21, 2006 #8
    hmm... interesting. I cant wait to learn all this.

    one more question:

    how do you write all the math symbols into these posts?
     
  10. Jan 21, 2006 #9

    StatusX

    User Avatar
    Homework Helper

    It's called latex. Here's a good introduction to it.
     
  11. Jan 21, 2006 #10
    very cool, thanks so much StatusX, you have been very helpful.:smile:
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Please Help. What is the antiderivative of e^arctan(x)?
  1. Integrate e^x arctan(x) (Replies: 28)

  2. Limit of arctan(e^x)? (Replies: 3)

Loading...