Undergrad Plotting a far-field Intensity distribution

Click For Summary
The discussion focuses on plotting a far-field intensity distribution using a specific equation for intensity that incorporates parameters such as slit width, separation, and wavelength. The user is trying to determine maximal intensity values and is seeking guidance on calculating angles theoretically, given their known values for slit dimensions and focal length. Key points include the identification of primary and secondary maxima in the intensity pattern, which depend on the behavior of the sine functions in the equation. The conversation also touches on the challenges of computing these values using a computer due to division by zero at primary maxima. Ultimately, the user is advised to input integer values to find the corresponding angles for both interference and diffraction patterns.
Strides
Messages
23
Reaction score
1
Hey,

I'm attempting to plot a far-field intensity distribution using theoretical values, however I'm having difficulty with calculating the intensity using the following equation:

$$I = I_o \frac {sin^{2}{b}}{b^{2}} \frac {sin^{2}{Ny}}{sin^{2}{y}}$$

where:

$$y = \frac {kdX}{2f}$$

$$b = \frac {kaX}{2f}$$

$$X = f*theta$$

I've got values for the focal length, f, the slit width, a, the slit separation (periodicity), d, the number of slits, N, the wavelength of the light beam and the original intensity which has been normalised to 1.

I'm trying to find the maximal intensity, which I currently believe to be 400, given that N = 20, however I'm having difficulty finding the other maximal values (ideally up to 8 each side).

I understand the nature of the convolution theory, but not entirely sure how I can utilise it to derive the necessary results.

Any help would be much appreciated?
 
Physics news on Phys.org
For the interference part of the function, (Note: I made a slight correction to this on 12-28-17=I didn't have a ## \sin^2 ## in the denominator), ## I(\theta)=I_o \frac{\sin^2(N \phi /2)}{\sin^2(\phi/2)} ## where ## \phi=\frac{2 \pi}{\lambda} d \sin(\theta) ## , the primary maxima occur when the denominator is equal to zero, and the limit is ##I(\theta_{max})=I_o N^2 ## as ## m \lambda=d \sin(\theta) ## for any integer ## m ##. This is the case for any ## N ##. The secondary maxima occur between the zeros of the numerator when the denominator is not equal to zero. The numerator is equal to zero when ## N d \sin(\theta)=k \lambda ## for some integer ##k ##. There are ## N-1 ## zeros of the numerator between adjacent principal maxima where the denominator is also zero. There are ## N-2 ## secondary maxima between adjacent primary maxima. One thing that makes doing this with a computer somewhat tricky is you need to simply assign the value of ## N^2 ## when the denominator is zero (at the primary maxima), because the computer will give an error there. ## \\ ## The other part of the function that gets multiplied by this is a single slit diffraction factor. You simply take a product of the two parts to get the complete result. It is not necessary to try to apply the convolution theorem from linear response theory and Fourier transform theory to graph this result. ## \\ ## The single slit diffraction pattern has a peak in the center (at ## \theta=0 ##), and has zeros at ## m \lambda=a \sin(\theta) ## for integers ## m \neq 0 ##. ## \\ ## Additional note: It is somewhat easy to sketch both of these functions by hand. The most important feature of the interference factor (the part described in detail above) is the primary maxima. The peaks are somewhat narrow with ## N=20 ## because the numerator drops to zero on either side of these peaks very quickly. The diffraction factor is also easily sketched.
 
Last edited:
  • Like
Likes Strides
Thanks for the help, however I don't have any values for θ that I can use, all I've got that I can think may be of some help is the focal length of the lens, that I used to focus the diffraction pattern. Is there any other method of obtaining θ theoretically?
 
Strides said:
Thanks for the help, however I don't have any values for θ that I can use, all I've got that I can think may be of some help is the focal length of the lens, that I used to focus the diffraction pattern. Is there any other method of obtaining θ theoretically?
Do you have any idea what ## d ## might be? If you used monochromatic light, with ## N =20 ##, (which is reasonably large), you should get mostly primary maxima as the main feature of the pattern. You'll get a central maxima at ## \theta=0 ##, (## m=0 ##), and other primary maxima at ## m \lambda=d \sin(\theta) ## for all integers ## m ## where ## \sin(\theta) \approx \tan(\theta)=x/f ##. (If ## d ## is on the order of the wavelength ## \lambda ##, ## m ## will be limited in that there will be a maximum ## m ## that ## |m \lambda/d| <1 ## in order to have ## |\sin(\theta)|<1 ##). ## \\ ## If you know the wavelength ## \lambda ##, you should be able to compute ## d ##. To get quantitative results for the slit width ## a ##, it usually takes considerably more effort. (For a single slit, ## a ## is more easily found. When there are many slits, e.g. when ## N=20 ##, ## a ## is more difficult to quantify from observing the diffraction pattern.)
 
Last edited:
I've already calculated d and a, using a microscope, to be, d = 2.53x10^(-4)m, and, a = 5.4x10^(-5)m, respectively. Would I just have to then input integers from say, 1 to 8, to get the correct angle, θ, for both parts of the function, interference and diffraction?
 
Strides said:
I've already calculated d and a, using a microscope, to be, d = 2.53x10^(-4)m, and, a = 5.4x10^(-5)m, respectively. Would I just have to then input integers from say, 1 to 8, to get the correct angle, θ, for both parts of the function, interference and diffraction?
Basically yes. The single slit diffraction part should limit how wide the interference pattern is. After around ## m=2 ## or ## m=3 ##, for ## m \lambda=a \sin(\theta) ##, the diffraction factor becomes very small and is largest between ## m=1 ## and ## m=-1 ##. (The diffraction factor is equal to ## 1 ## at ## \theta =0 ##). (If ## a ## is very small, you get a diffraction factor that covers a wider range of ## \theta ## ). The diffraction factor is easily sketched. You can also graph it with a computer. ## \\ ## Just a quick guess at what you observed experimentally: You probably got about 10 bright fringes in a central region (with the fringes brightest in the center) and a second set(s) of about 5 fringes on either side of the 10 brightest ones, and perhaps a 3rd set of about 5 on either side of those that is considerably dimmer.
 
Last edited:
Topic about reference frames, center of rotation, postion of origin etc Comoving ref. frame is frame that is attached to moving object, does that mean, in that frame translation and rotation of object is zero, because origin and axes(x,y,z) are fixed to object? Is it same if you place origin of frame at object center of mass or at object tail? What type of comoving frame exist? What is lab frame? If we talk about center of rotation do we always need to specified from what frame we observe?

Similar threads

  • · Replies 17 ·
Replies
17
Views
5K
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 25 ·
Replies
25
Views
4K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
7K
Replies
2
Views
3K