Plotting the roots of unity on the complex plane

AI Thread Summary
The discussion focuses on finding the 6th complex roots of √3 + i and how to plot them on the complex plane. The roots are derived using polar coordinates, resulting in six distinct points based on the angle increments of π/3. It is clarified that these roots are not the same as roots of unity but are evenly distributed around a circle, each rotated by π/3 from the previous one. The question about whether the positions of roots are the same for different equations is addressed, emphasizing that the distribution remains consistent for roots of the same degree. The key takeaway is the uniform spacing of the roots around the circle in the complex plane.
Cottontails
Messages
33
Reaction score
0

Homework Statement


Find the 6th complex roots of √3 + i.

Homework Equations


z^6=2(cos(π/6)+isin(π/6))
r^6=2, r=2^1/6
6θ=π/6+2kπ, θ=π/36+kπ/3

The Attempt at a Solution


When k=0, z = 2^1/6(cos(π/36)+isin(π/36)),
When k=1, z = 2^1/6(cos(13π/36)+isin(13π/36)),
When k=2, z = 2^1/6(cos(25π/36)+isin(25π/36)),
When k=3, z = 2^1/6(cos(37π/36)+isin(37π/36)),
When k=4, z = 2^1/6(cos(49π/36)+isin(49π/36)),
When k=5, z = 2^1/6(cos(61π/36)+isin(61π/36)).
I just want help with plotting these roots on the complex plane. So, I am just wondering, are all roots of unity on the complex plane the same, regardless of the equation? By this, I mean, are the position of the roots the same, regardless of what the equation is?
 
Physics news on Phys.org
Cottontails said:

Homework Statement


Find the 6th complex roots of √3 + i.

Homework Equations


z^6=2(cos(π/6)+isin(π/6))
r^6=2, r=2^1/6
6θ=π/6+2kπ, θ=π/36+kπ/3

The Attempt at a Solution


When k=0, z = 2^1/6(cos(π/36)+isin(π/36)),
When k=1, z = 2^1/6(cos(13π/36)+isin(13π/36)),
When k=2, z = 2^1/6(cos(25π/36)+isin(25π/36)),
When k=3, z = 2^1/6(cos(37π/36)+isin(37π/36)),
When k=4, z = 2^1/6(cos(49π/36)+isin(49π/36)),
When k=5, z = 2^1/6(cos(61π/36)+isin(61π/36)).
I just want help with plotting these roots on the complex plane. So, I am just wondering, are all roots of unity on the complex plane the same, regardless of the equation? By this, I mean, are the position of the roots the same, regardless of what the equation is?

These aren't the roots of unity. They are the roots of ##\sqrt 3 +i##. I'm not sure what you mean by the position being the same. What they are is distributed evenly around the circle. In this example, each one is rotated ##\frac \pi 3## from the next, so by the time you do that 6 times, you are all the way around.
 
I picked up this problem from the Schaum's series book titled "College Mathematics" by Ayres/Schmidt. It is a solved problem in the book. But what surprised me was that the solution to this problem was given in one line without any explanation. I could, therefore, not understand how the given one-line solution was reached. The one-line solution in the book says: The equation is ##x \cos{\omega} +y \sin{\omega} - 5 = 0##, ##\omega## being the parameter. From my side, the only thing I could...
Back
Top