Poisson Statistics in Solid State Physics

blue2004STi
Messages
21
Reaction score
0

Homework Statement


In the Drude model the probability of an electron having a collision in an infinitesimal time interval dt is given by dt/\tau.
(a) Show that an electron picked at random at a given moment will have no collisions during the next t seconds with probability e-t/\tau.
(b) Show that the probability that the time interval between two successive collisions of an electron falls in the range between t and t + dt is (dt/\tau)e(-t/\tau)
(c) Show as a consequence of a) that at any moment the mean time up to the next collision averaged over alll electrons is \tau.
(d) Show that as a consequence of b) that the mean time between successive collisions is \tau.


Homework Equations


Probability of a collision per unit time = t/\tau
Poisson Distribution of Random Variables, Poisson(k,\lambda)= (\lambdake-dt/\tau)/k!


The Attempt at a Solution


So I proved part (a) by using the Poisson Distribution of RV's. Part (b) I tried to do the same thing as part (a), but for the time interval I used (t+dt)-t which gave me a lambda of dt/\tau. Then I used k = 1 and went from there and it worked until the exponent where I got e-dt/\tau rather than e-t/\tau. Part (c) and (d) are where I get lost and have no clue of what to do.
 
Physics news on Phys.org
After discussing this with my professor he said that to solve this problem you don't have to use the Poisson distribution, that being said he also told me that "if you ask the distribution the right questions" that it can be solved using the distribution. Not sure what this means in terms of how to use it... I don't understand how to approach the problem other than using the distribution and for part b) apparently I was wrong originally, but I'm not exactly sure what to "ask" the distribution.

If C is the time between collisions, I know that I want to know P(t < C < t + dt)...now this is where I get stuck, I'm not entirely sure where to go from here...Thoughts?

Thanks,

Matt
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top