Polar to Rectangular conversions

  • Thread starter Thread starter Eng67
  • Start date Start date
  • Tags Tags
    Polar Rectangular
Eng67
Messages
21
Reaction score
0
I am at a standstill with the solution to this problem.

I need to convert r^2=2cos(2 theta) to rectangular form.

I know that x = rcos(theta) and y = rsin(theta)

so far I have r = (2cos(2theta))/r

then I substitute for r

sqrt(x^2+y^2)= (2cos(2theta))/sqrt(x^2+y^2)

Then I hit a brick wall.

please help me knock down this wall.

Thanks
 
Physics news on Phys.org
Replace r² by x²+y² and theta = arctan(y/x).
 
So I then would have

sqrt(x^2+y^2)= (2cos(2arctan y/x))/sqrt(x^2+y^2)

I am still stuck.
 
Eng67 said:
I am at a standstill with the solution to this problem.

I need to convert r^2=2cos(2 theta) to rectangular form.

I know that x = rcos(theta) and y = rsin(theta)

so far I have r = (2cos(2theta))/r

then I substitute for r

sqrt(x^2+y^2)= (2cos(2theta))/sqrt(x^2+y^2)

Then I hit a brick wall.

please help me knock down this wall.

Thanks

Back up a little! You have r^2= 2 cos(2\theta) so first note that cos(2\theta)= cos^2(\theta)- sin^2(\theta) so that
r^2= 2(cos^2(\theta)- sin^2(\theta))
Now multiply on both sides by r2 to get
(r^2)^2= 2(r^2cos^2(\theta)- r^2sin^2(\theta))
I'll bet you can convert that to rectangular coordinates!
 
Thanks!

This is now so simple.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top