Polynomial Subspace Dimension & Basis Calculation

gotmejerry
Messages
9
Reaction score
0

Homework Statement



Let M be a subspace of the vector space \mathbb{R}_2[t] generated by p_1(T)=t^2+t+1 and p_2(T)=1-t^2, and N be a subspace generated by q_1(T)=t^2+2t+3 and q_2(T)=t^2-t+1. Show the dimension of the following subspaces:M+N, M \cap N, and give a basis for each.


Homework Equations





The Attempt at a Solution


I have tried the following: if I take the linear combination of p_1 p_2 q_1 q_2, I get (a+b+c+d)t^2 + (a+2c-d)t +(a+b+3c+d). And a basis of this polynomial is \{1,t,t^2\}, which means the dimension of M+N is 3.

And if M and N are finite dimension subspaces then dim(M+N)=dim M + dim N- dim(M \cap N). The diemnsion of the subspace generated by p1 and p2 is 2, and so is the dimension of the subspace generated by q1 and q2. Am I right? But then from this dim(M+N)=dim M + dim N- dim(M \cap N) I get that (M \cap N) has a dimension of 1.

Thank you!
 
Physics news on Phys.org
1. how do you conclude that dim(M+N) = 3? clearly it's ≤ 3, but how do you know that we need all 3 basis elements to describe something in M+N? it's not immediately clear that span({p1,p2,q1,q2}) is all of R2[t].

2. before you can conclude dim(M) and dim(N) = 2, you should show that {p1,p2} and {q1,q2} are actually linearly independent. this isn't hard to do.

3. assuming you do (1) and (2) above, then you are in a position to use

dim(M+N) = dim(M) + dim(N) - dim(M∩N).

finding the dimensions isn't really the hard part. finding the basis elements is. what would an element of M∩N look like?
 
1. If I take the linear combinations of p1 p2 q1 q2 as I have written and I am not wrong I think the basis {t^2 t 1} is ok.

2. I found out that {p1,p2} and {q1,q2} are linearly independent, because a*p1+b*p2=0 s only solution is the trivial soulution, same for {q1,q2}. So dim(M)=2 and dim(N)=2.

3. An element in M \cap N is something which is in the span({p1,p2}) and in the span({q1,q2}) at the same time. But how do I find a basis ?
 
for span({p1,p2,q1,q2}) to equal R2[t], every polynomial must be in the span.

if we have any abitrary polynomial At2 + Bt + C, in the span, this means that we have:

a+b+c+d = A
a+2c-d = B
a+b+3c+d = C

this is equivalent to:

\begin{bmatrix}1&1&1&1\\1&0&2&-1\\1&1&3&1 \end{bmatrix}\begin{bmatrix}a\\b\\c\\d \end{bmatrix} = \begin{bmatrix}A\\B\\C \end{bmatrix}

now, it isn't obvious that the 4x3 matrix actually has rank 3. i think you might have made a lucky guess.

as for M∩N, suppose we have a(1+t+t2) + b(1-t2) = c(1-t+t2) + d(3+2t+t2). what can we say about a,b,c and d?
 
a(1+t+t2) + b(1-t2) = c(1-t+t2) + d(3+2t+t2) is true if

a-b=c+d
a=2d-c
a+b=c+3d

What do I do now?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top