A Ponderomotive force and conservation of momentum

AI Thread Summary
A charged particle in an inhomogeneous, oscillating electric field experiences ponderomotive force, accelerating away from regions of stronger field intensity. When a charged particle is positioned off-center in a laser beam, it moves toward weaker field areas. This movement affects the laser beam's momentum, as described by a theorem analogous to Poynting's theorem, which states that changes in the particle's momentum result in equal and opposite changes in the electromagnetic field's momentum. The interaction highlights the conservation of momentum between the particle and the electromagnetic field. Understanding this relationship is crucial for applications in laser physics and particle dynamics.
Philip Koeck
Gold Member
Messages
801
Reaction score
229
According to https://en.wikipedia.org/wiki/Ponderomotive_force a charge in an inhomogeneous, oscillating electric field will be accelerated in the direction where the field gets weaker.

One could think of a charged particle placed slightly off-center inside a laser beam.
If I read the Wikipedia page correctly this particle should be accelerated away from the center of the beam.

What would happen to the laser beam during this process?
 
Physics news on Phys.org
There is a theorem like Poynting’s theorem, but for momentum. As the momentum of the particle changes, the momentum of the EM field changes in the equal and opposite direction.
 
  • Like
  • Informative
Likes vanhees71, berkeman and Philip Koeck
Thread 'Inducing EMF Through a Coil: Understanding Flux'
Thank you for reading my post. I can understand why a change in magnetic flux through a conducting surface would induce an emf, but how does this work when inducing an emf through a coil? How does the flux through the empty space between the wires have an effect on the electrons in the wire itself? In the image below is a coil with a magnetic field going through the space between the wires but not necessarily through the wires themselves. Thank you.
Thread 'Griffith, Electrodynamics, 4th Edition, Example 4.8. (Second part)'
I am reading the Griffith, Electrodynamics book, 4th edition, Example 4.8. I want to understand some issues more correctly. It's a little bit difficult to understand now. > Example 4.8. Suppose the entire region below the plane ##z=0## in Fig. 4.28 is filled with uniform linear dielectric material of susceptibility ##\chi_e##. Calculate the force on a point charge ##q## situated a distance ##d## above the origin. In the page 196, in the first paragraph, the author argues as follows ...
Back
Top