Positive definite Negative definate Matrix

retspool
Messages
35
Reaction score
0
So i need to show if a matrix is positive definite or negative or neither

I have a matrix 3x3 A so i compute xTAx

I am left with an quadratic equation interms of x_1 x_2 and x_3

The Matrix is of the form

A = [ 9 -1 2]
|-1 7 -3|
[2 -3 3]

and solving xTAx i get

9x_1^2 + 7x_2^2 + 3x_3^2 - 2x_1x_2 + 4x_1x_3 - 6x_3x_2

If i need to show that it is positive definite or negative do i need to find an x and set it equal to (x_1 x_2 x_3) st that the xTAx is greater or less than 0?


Also do i need to find eigenvalues to prove anything?

Thanks
 
Physics news on Phys.org
Here is what i came up with.
Pretty straightftwd

Attachment enclosed
 

Attachments

  • IMAG0098.jpg
    IMAG0098.jpg
    21.8 KB · Views: 505
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top