Converging Series and Derivative Analysis for Positive Terms

nameVoid
Messages
238
Reaction score
0
sum(1/(n(n^2-1)^(1/2)),n=2,infinity)
first derivative <0 for x>=2
I(1/(x(x^2-1)^(1/2)),x,2,infinity)
x=secT, dx=secTtanT
I(secTtanT/(secTtanT),T) ?
 
Last edited:
Physics news on Phys.org
What is your question?
 
my book is showing this series converging to pi/6
 
ok..this integral is in basic form of I(1/(u(u^2-a^2)^(1/2)),u)=1/a sec^-1(u/a)+C
a=1
sec^-1 u
lim sec^-1x as x-> infinity =pi/2 and sec^-1 2=pi/3
pi/2-pi/3 =pi/6
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top