Potential anywhere inside a cube

  • Thread starter Thread starter andre220
  • Start date Start date
  • Tags Tags
    Cube Potential
andre220
Messages
75
Reaction score
1

Homework Statement


All six faces of a cube, of side length ##L##, are maintained at constant, but different potentials. The left and right faces are at ##V_1## each. The top and bottom are at ##V_2## each. The front and back are at ##V_3##. Determine the electrostatic potential ##\Phi(x,y,z)## at any point inside the cube. What is the value of the electrostatic potential at the center of the cube?

Homework Equations


Solutions are of the form:

##X(x) = A \sin{k_1 x} + B\cos{k_1 x}##
##Y(y) = C\sin{k_2 y} + D\cos{k_2 y}##
##Z(z) = E\sinh{k_3 z} + F\cosh{k_3 z}##
where ##k_3 = \sqrt{k_1 + k_2}##

The Attempt at a Solution


Normally, the case in which one or two sides are held at some potential, the symmetry is exploited to get ##k_i## and the prevailing constants. However, here, that does not seem to be possible here.

When: ##x =0, x= L##, ##\Phi = V_1##
##y =0, y= L##, ##\Phi = V_2##
##z =0, z= L##, ##\Phi = V_3##

However, I do not see how this get me any closer to finding, any of the constants ##A,B,C,D,E,F##. ##\Phi = X(x)Y(y)Z(z)##.
Thus for the first B.C.:

##\Phi(0,y,z) = (A\sin{0} + B\cos{0})(C\sin{k_2 y} + D \cos{k_2 y})(E\sinh{k_3 z} + F\cosh{k_3 z})##
##= B (C\sin{k_2 y} + D \cos{k_2 y})(E\sinh{k_3 z} + F\cosh{k_3 z}) = V_1##

and so do I just keep doing this and will eventually, get my coefficients? Regardless, I don't necessarily see how ##k_i## would be found.

Thank you
 
Physics news on Phys.org
The problem is a linear PDE. You can solve for one inhomogeneity at a time and make a superposition of the solutions to find the full solution.
 
Okay, I take when ##x=0\implies## ##V_1##:
##A\sin{k_x 0} + B\cos{k_x 0} = V_1 \implies B = V_1## and I could keep going on like that for each of the six boundary conditions
But I am still not seeing how that would work. Plus I don't see how I could get the ##k##'s from this.
 
No. You need to split the entire problem into several parts, then solve each part separately, including the now homogeneous boundary conditions on the sides.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top