Potential in Concentric Spherical Shells

Nicolaus
Messages
73
Reaction score
0

Homework Statement


Two grounded spherical conducting shells of radii a and b (a < b) are arranged concentrically. The space between the shells carries a charge density ρ(r) = kr^2. What are the equations for the potential in each region of space?

Homework Equations


Poisson's and LaPlace's in Spherical Coordinates

The Attempt at a Solution


I solved Poisson's Equation for the space between the shells, in spherical coordinates, and arrived at:
V(r) = (1/ε)kr^2/6 - (C1)/r + (C2)
where C1 and C2 are the constants of integration.
What would be the general solution for the potential in the other regions where ρ=0? Would I simply apply Laplace's equation in those regions, than apply the suitable boundary conditions?
 
Physics news on Phys.org
Nicolaus said:
I solved Poisson's Equation for the space between the shells, in spherical coordinates, and arrived at:
V(r) = (1/ε)kr^2/6 - (C1)/r + (C2)
where C1 and C2 are the constants of integration.
Your first term on the right does not have the correct dimensions for electric potential.
What would be the general solution for the potential in the other regions where ρ=0? Would I simply apply Laplace's equation in those regions, than apply the suitable boundary conditions?
Yes, that will work.
 
I made a mistake, the equation in-between a and b should read: V(r) = kr^4/20 - c1/r +c2
The boundary conditions should be Vinside(a) = Vbetween(a) and Vbetween(b) = Vout(B) for continuity; am I missing any other conditions? I know there's the discontinuous derivative of potential = some surface charge, but I am not given such a surface charge.
 
Nicolaus said:
I made a mistake, the equation in-between a and b should read: V(r) = kr^4/20 - c1/r +c2
I believe the sign of the first term is incorrect.
The boundary conditions should be Vinside(a) = Vbetween(a) and Vbetween(b) = Vout(B) for continuity; am I missing any other conditions? I know there's the discontinuous derivative of potential = some surface charge, but I am not given such a surface charge.
I don't understand your boundary conditions. Perhaps it's the notation you are using. The usual interpretation of "grounding a conductor" is to set the potential of the conductor to 0.

The potential is continuous everywhere. As you say, the derivative of V will be discontinuous at a surface containing surface charge.

You will be able to determine the surface charges after you find V.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top