Potential inside concentric spherical shells with non-uniform charge density

CopyOfA
Messages
33
Reaction score
1

Homework Statement


We are given a two concentric spherical shells with small radius ## a ## and larger radius ## b ##. The inner and outer shells are made of conducting material and there is a volume charge density, ##\rho\left(r\right) ##, that exists between the shells,. The boundary conditions are ##\phi\left(a\right) = 0## and ##\phi\left(b\right) = V_0##.

Show that the potential for ##a<r<b## is:

##\phi\left(r\right) = \dfrac{ab}{b-a} \left[V_0 \left(\dfrac{1}{a}- \dfrac{1}{r}\right) + \int\limits_{a}^{b} \dfrac{r'^2 dr'}{\epsilon_0} \rho\left(r\right) \left(\dfrac{1}{a}-\dfrac{1}{r_<}\right)\left(\dfrac{1}{r_>} - \dfrac{1}{b}\right) \right] ##

where ##r_< = lesser(r,r')## and ##r_> = greater(r,r')##.

Homework Equations


[/B]
##Q\left(\mathbf{r}\right) = \int\limits_{V}\rho\left(\mathbf{r}\right)dV##

##\int\limits_{S}\mathbf{E}\cdot d\mathbf{S} = \dfrac{Q_{enclosed}}{\epsilon_0}##

##\phi\left(\mathbf{r}\right) = -\int\limits_{\mathbf{r}_0}^{\mathbf{r}} \mathbf{E}\cdot d\mathbf{l}##

##\nabla^2 \phi = -\dfrac{\rho\left(\mathbf{r}\right)}{\epsilon_0}##

The Attempt at a Solution


Since the inner surface is kept at zero potential, a charge will be induced on it's surface equal to the total charge of the charge density. And thus, the charge enclosed by a Gaussian sphere of radius ##r## (##a<r<b##) will be:

##Q\left(r\right) = -\sigma_{induced}\left(a\right) + \int\limits_{V}\rho\left(r\right)dV = -4\pi \int\limits_{a}^{b} \rho\left(r\right)r^2 dr + 4\pi\int\limits_{a}^{r}\rho\left(s\right)s^2 ds##

##E\left(r\right) = \dfrac{1}{4\pi\epsilon_0 r^2}Q\left(r\right) = \dfrac{1}{\epsilon_0 r^2} \left[ -\int\limits_{a}^{b} \rho\left(t\right) t^2 dt + \int\limits_{a}^{r}\rho\left(s\right)s^2 ds \right] ##

##\phi\left(r\right) = -\int\limits_{a}^{r} E_{r}dr = \int\limits_{a}^{r} \left\{\dfrac{1}{\epsilon_0 r'^2} \left[ -\int\limits_{a}^{b} \rho\left(t\right) t^2 dt + \int\limits_{a}^{r'}\rho\left(s\right)s^2 ds \right] dr'\right\} = \int\limits_{a}^{r} \left[\dfrac{1}{r'^2}\int\limits_{a}^{b}\dfrac{\rho\left(t\right)}{\epsilon_0}t^2 dt - \dfrac{1}{\epsilon_0 r'^2}\int\limits_{a}^{r'}\rho\left(s\right)s^2 ds \right] dr'##

Taking the first sub-integral:
##\int\limits_{a}^{b}\dfrac{\rho\left(t\right)}{\epsilon_0}t^2 dt = \int\limits_{a}^{b} \left(-\nabla^2 \phi\right) t^2 dt##

In spherical coordinates, with dependence only on ##r##,
##\nabla^2 \phi = \dfrac{1}{r^2}\dfrac{d}{dr}\left(r^2 \dfrac{d\phi}{dr} \right)##

Hence,
##\int\limits_{a}^{b} \left(-\nabla^2 \phi\right) t^2 dt = -\int\limits_{a}^{b}\left[\dfrac{1}{t^2}\dfrac{d}{dt}\left(t^2 \dfrac{d\phi}{dt} \right)\right] t^2 dt = -\int\limits_{a}^{b}\dfrac{d}{dt}\left(t^2 \dfrac{d\phi}{dt} \right) dt = -t^2\dfrac{d\phi}{dt}\bigg|_{t=a}^{b}##

Plugging into larger integral,
##\int\limits_{a}^{r} \left[\dfrac{1}{r'^2}\left(-t^2\dfrac{d\phi}{dt}\bigg|_{t=a}^{b}\right)- \dfrac{1}{\epsilon_0 r'^2}\int\limits_{a}^{r'}\rho\left(s\right)s^2 ds \right] dr' = -\int\limits_{a}^{r}\dfrac{1}{r'^2}\left[b^2\dfrac{d\phi}{dt}\bigg|_{t=b} - a^2\dfrac{d\phi}{dt}\bigg|_{t=a}\right]dr' - \int\limits_{a}^{r}\dfrac{1}{r'^2}u\left(r'\right)dr'##

where ##u\left(r'\right) = \int\limits_{a}^{r'}\dfrac{\rho\left(s\right)}{\epsilon_0}s^2 ds##

I feel like this is leading nowhere though... For one, I don't know the value of the potential derivatives anywhere, much less the two surfaces. Second, I don't have an integral of the density from ##a## to ##b##. Finally, I don't have any clue where the ##r_<## and ##r_>## come into play.

Any suggestion? Am I doing some of this work wrong?
 
Physics news on Phys.org
In case anyone was wondering, I did figure this out, after much struggling. I'll leave this here for the next poor soul who needs some direction on a similar problem. The approach is to use Green's function. Consider Poisson's equation:
$$\nabla^2 \phi = -\dfrac{\rho\left(r\right)}{\epsilon_0}$$
Carrying out the derivative in only the radial direction (as our charge distribution only varies radially):

$$\dfrac{1}{r^2}\dfrac{d}{dr}\left(r^2 \dfrac{d\phi}{dr}\right) = \dfrac{1}{r^2}\left(2r\dfrac{d\phi}{dr} + r^2\dfrac{d^2 \phi}{dr^2}\right) = -\dfrac{\rho\left(r\right)}{\epsilon_0}$$
Our differential equation is:

$$r^2\dfrac{d^2 \phi}{dr} + 2r \dfrac{d\phi}{dr} = -\dfrac{r^2\rho\left(r\right)}{\epsilon_0}$$
Following convention in finding the Green’s function for this setup, multiply both sides of the equation by a scalar function \psi\left(r\right) and integrate over the region:

$$\int\limits_{a}^{b}r^2\psi\left(r\right)\dfrac{d^2 \phi}{dr} dr + \int\limits_{a}^{b}2r\psi\left(r\right) \dfrac{d\phi}{dr} dr = \int\limits_{a}^{b}-\dfrac{r^2\rho\left(r\right)}{\epsilon_0}\psi\left(r\right) dr$$
Performing integration by parts on each integral:

$$\begin{align}r^2\psi\left(r\right)\dfrac{d\phi}{dr}\bigg|_{a}^{b} &- \left(2r\psi\left(r\right) + r^2 \dfrac{d\psi}{dr}\right)\dfrac{d\phi}{dr}\bigg|_{a}^{b} + \int\limits_{a}^{b}\phi\left(r\right)\left(2\psi\left(r\right) + 4r\dfrac{d\psi}{dr} + r^2\dfrac{d^2\psi}{dr^2} \right)dr \\
&+ 2r\psi\left(r\right)\phi\left(r\right)\bigg|_{a}^{b} - 2\int\limits_{a}^{b}\phi\left(r\right)\psi\left(r\right)dr - 2\int\limits_{a}^{b}r\phi\left(r\right)\dfrac{d\psi}{dr}dr = K \end{align}$$

where K = \int\limits_{a}^{b}-\dfrac{r^2\rho\left(r\right)}{\epsilon_0}\psi\left(r\right)dr.
Canceling like terms:

$$2\int\limits_{a}^{b} r\phi\left(r\right)\dfrac{d\psi}{dr}dr + \int\limits_{a}^{b} r^2 \phi\left(r\right)\dfrac{d^2\psi}{dr^2} dr + r^2\left[\psi\left(r\right)\dfrac{d\phi}{dr} - \phi\left(r\right)\dfrac{d\psi}{dr}\right]\bigg|_{a}^{b} = K$$
And we get:

$$\int\limits_{a}^{b} r^2\left(\nabla^2 \psi\right) \phi\left(r\right) dr + r^2\left[\psi\left(r\right)\dfrac{d\phi}{dr} - \phi\left(r\right)\dfrac{d\psi}{dr}\right]\bigg|_{a}^{b} = K$$
Letting \nabla^2\psi\left(r\right) = -4\pi\delta\left(\mathbf{x}-\mathbf{x}&#039;\right) = -\dfrac{4\pi}{r^2}\delta\left(r-r&#039;\right) the above equation is:

$$\int\limits_{a}^{b} r^2 \left( -\dfrac{4\pi}{r^2}\delta\left(r-r'\right)\right)\phi\left(r\right) dr + r^2\left[\psi\left(r\right)\dfrac{d\phi}{dr} - \phi\left(r\right)\dfrac{d\psi}{dr}\right]\bigg|_{a}^{b} = -4\pi\phi\left(r'\right) + r^2\left[\psi\left(r\right)\dfrac{d\phi}{dr} - \phi\left(r\right)\dfrac{d\psi}{dr}\right]\bigg|_{a}^{b} = K$$

Letting \psi\left(a\right) = \psi\left(b\right) = 0, and noticing that \phi(a) = 0, \phi(b) = V_0, the result is:
$$-4\pi\phi\left(r'\right) + r^2\left[\psi\left(r\right)\dfrac{d\phi}{dr} - \phi\left(r\right)\dfrac{d\psi}{dr}\right]\bigg|_{a}^{b} = -4\pi\phi\left(r'\right) - b^2V_0 \dfrac{d\psi}{dr} = K$$

Therefore,

$$\phi\left(r’\right) = \dfrac{1}{4\pi}\left[- b^2V_0 \dfrac{d\psi}{dr} + \int\limits_{a}^{b}\dfrac{r^2\rho\left(r\right)}{\epsilon_0}\psi\left(r\right)dr\right]$$
Noting that in the region r&lt;r’, \nabla^2 \psi = 0, try the function

$$\psi\left(r\right) = A + Br^{-1}$$
This function satisfies the above homogenous differential equation. Applying the boundary condition at a,

$$\psi\left(a\right) = 0 = A + Ba^{-1}, \Longrightarrow B = -Aa$$
$$\psi_{1}\left(r\right) = A\left(1-ar^{-1}\right)$$
Similarly, in the region r&gt;r’, \nabla^2 \psi = 0.

Therefore, assuming a solution and applying a boundary condition at b,

$$\psi\left(b\right) = 0 = C + Db^{-1}, \Longrightarrow D = -Ca$$
$$\psi_{2}\left(r\right) = C\left(1-br^{-1}\right)$$
In order to determine the value of the coefficients, one must use the following equations:
$$\psi_{1}\left(r’\right) = \psi_{2}\left(r’\right)$$
$$\int\limits_{r’-\varepsilon}^{r’+\varepsilon} \nabla^2 \psi dr = \int\limits_{r’-\varepsilon}^{r’+\varepsilon} -\dfrac{4\pi}{r^2}\delta\left(r-r’\right)dr = -\dfrac{4\pi}{r’^2}$$
Hence,

$$A\left(1-ar'^{-1}\right) = C\left(1-br'^{-1}\right) \Longrightarrow A = C\left(\dfrac{r'-b}{r'-a}\right)$$
and

$$\int\limits_{r’-\varepsilon}^{r’+\varepsilon} \left[\dfrac{2}{r}\dfrac{d\psi}{dr} + \dfrac{d^2\psi}{dr^2}\right]dr = \dfrac{2}{r}\psi\left(r\right)\bigg|_{r’-\varepsilon}^{r’+\varepsilon} + \int\limits_{r’-\varepsilon}^{r’+\varepsilon}\dfrac{2}{r^2}\psi\left(r\right) + \dfrac{d\psi}{dr}\bigg|_{r’-\varepsilon}^{r’+\varepsilon}$$
It's clear that the first two terms in will vanish as \varepsilon \rightarrow 0. The third term is:

$$\dfrac{d\psi}{dr}\bigg|_{r’-\varepsilon}^{r’+\varepsilon} = \dfrac{d\psi_{2}\left(r\right)}{dr}\bigg|_{r = r' +\varepsilon} - \dfrac{d\psi_{1}\left(r\right)}{dr}\bigg|_{r = r' - \varepsilon} = Cb\left(r'+\varepsilon\right)^{-2} - Aa\left(r'-\varepsilon\right)^{-2}$$
Letting \varepsilon \rightarrow 0,

$$Cbr'^{-2} - Aar'^{-2} = -\dfrac{4\pi}{r'^2}$$
$$Cb - Aa = -4\pi$$
$$Cb - Ca\left(\dfrac{r'-b}{r'-a}\right) = -4\pi$$
$$C = -\dfrac{4\pi}{b-a}\left(\dfrac{r'-a}{r'}\right) \Longrightarrow A = -\dfrac{4\pi}{b-a}\left(\dfrac{r'-b}{r'}\right)$$
Hence,
$$\psi\left(r,r'\right) = \begin{cases} -\dfrac{4\pi}{b-a}\left(\dfrac{r'-b}{r'}\right)\left(1-ar^{-1}\right) & r<r' \\
-\dfrac{4\pi}{b-a}\left(\dfrac{r'-a}{r'}\right)\left(1-br^{-1}\right) & r>r' \end{cases}$$
$$\psi\left(r,r'\right) = \begin{cases} -\dfrac{4\pi}{b-a}\left(\dfrac{r'-b}{r'}\right)\left(\dfrac{r-a}{r}\right) & r<r' \\
-\dfrac{4\pi}{b-a}\left(\dfrac{r'-a}{r'}\right)\left(\dfrac{r-b}{r}\right) & r>r' \end{cases}$$
$$\psi\left(r,r'\right) = \begin{cases} -\dfrac{4\pi ab}{b-a}\left(\dfrac{1}{b} - \dfrac{1}{r'}\right)\left(\dfrac{1}{a} - \dfrac{1}{r}\right) & r<r' \\
-\dfrac{4\pi ab}{b-a}\left(\dfrac{1}{a} - \dfrac{1}{r'}\right)\left(\dfrac{1}{b} - \dfrac{1}{r}\right) & r>r' \end{cases}$$
Finally,
$$\psi\left(r,r'\right) = \dfrac{4\pi ab}{b-a}\left(\dfrac{1}{r_>} - \dfrac{1}{b}\right)\left(\dfrac{1}{a} - \dfrac{1}{r_<}\right)$$
where r_&lt; = \min\left(r,r&#039;\right) and r_&gt; = \max\left(r,r&#039;\right).

We also need d\psi/dr at r=b:
$$\dfrac{d\psi}{dr} \bigg|_{r=b} = -\dfrac{4\pi ab}{b-a}\left(\dfrac{1}{a} - \dfrac{1}{r'}\right)\dfrac{1}{r^2}\bigg|_{r=b} = -\dfrac{4\pi a}{b\left(b-a\right)}\left(\dfrac{1}{a} - \dfrac{1}{r'}\right)$$
Plugging this into the equation for the potential determined earlier,
$$\phi\left(r’\right) = \dfrac{1}{4\pi}\left[- b^2V_0 \dfrac{d\psi}{dr} + \int\limits_{a}^{b}\dfrac{r^2\rho\left(r\right)}{\epsilon_0}\psi\left(r\right)dr\right]$$
$$\phi\left(r’\right) = \dfrac{1}{4\pi}\left[-b^2V_0\left(-\dfrac{4\pi a}{b\left(b-a\right)}\left(\dfrac{1}{a} - \dfrac{1}{r'}\right)\right) + \int\limits_{a}^{b}\dfrac{r^2\rho\left(r\right)}{\epsilon_0}\dfrac{4\pi ab}{b-a}\left(\dfrac{1}{r_>} - \dfrac{1}{b}\right)\left(\dfrac{1}{a} - \dfrac{1}{r_<}\right)dr\right]$$
$$\phi\left(r’\right) = \dfrac{ab}{b-a}\left[V_0\left(\dfrac{1}{a} - \dfrac{1}{r'}\right) + \int\limits_{a}^{b}\dfrac{r^2\rho\left(r\right)}{\epsilon_0}\left(\dfrac{1}{r_>} - \dfrac{1}{b}\right)\left(\dfrac{1}{a} - \dfrac{1}{r_<}\right)dr\right]$$
 
Last edited:
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top