razidan
- 75
- 1
Homework Statement
A conducting sphere, radius R, charged with Q is inside a conducting shell (2R<r<3R) with charge 2Q. Find the electric potential and the energy.
Homework Equations
\Phi =-\int_{r_1}^{r_2} \vec{E}\cdot\vec{dl}
U=\int_{V}E^2dV
The Attempt at a Solution
I think i got it right, and I'm mostly looking for confirmation:
I started with calculating the field everywhere:
<br /> \vec{E} (r) =<br /> \begin{cases}<br /> 0 & \quad \text{if } \text{ r<R}\\<br /> \frac{kQ}{r^2} \hat{r} & \quad \text{if } \text{ R<r<2R}\\<br /> 0 & \quad \text{if } \text{ 2R<r<3R}\\<br /> \frac{3kQ}{r^2} \hat{r} & \quad \text{if } \text{ r>3R}\\<br /> \end{cases}<br />
this leads to:
<br /> \Phi (r) =<br /> \begin{cases}<br /> \frac{kQ}{2r} & \quad \text{if } \text{ r<R}\\<br /> \frac{3kQ}{3R}+\frac{kQ}{2R}-\frac{kQ}{r} \hat{r} & \quad \text{if } \text{ R<r<2R}\\<br /> \frac{3kQ}{3R} & \quad \text{if } \text{ 2R<r<3R}\\<br /> \frac{3kQ}{r} \hat{r} & \quad \text{if } \text{ r>3R}\\<br /> \end{cases}<br />
\text{and the energy is} \quad 14\pi\frac{k^2Q^2}{R}
Thanks,
R