Potential of a cylinder with uniform charge

risendemon
Messages
8
Reaction score
0
Hi, I'm new here, and I'm sure you will be hearing from me often in here :smile:

anyway, my question is in regards to finding the potential of a cyllinder, with uniform volume charge sigma, radius r, and length L. In this case, I need to find the potential along the axis of the cylinder, but outside of the charge distribution.

I have an idea how to do it, let me know if I'm on the right track. I decided the best way to go about doing this is to find the electric field resulting on the point of reference from a disk of charge, with surface charge d(sigma), and building the cylinder out of an infinite amount of disks from distance z to distance z+L- then using the electric field to find the electric potential. I found the electric field resulting from the disk of charge, but am having trouble setting up the integration to find the field due to the volume, because theta varies, and so does the distance from the disk and the point of reference. Any help would be appreciated. Does anyone know of an easier way to tackle this problem?

here's a picture of the problem to make things easier:
http://i43.photobucket.com/albums/e394/risendemonx/potentialcylinder.jpg

oh, and one last thing: since I'm new here, can anyone show me how to post equations and pictures directly to the thread? thanks a bunch!
 
Last edited by a moderator:
Physics news on Phys.org
actually, I think I figured out an easier way to set up the integral, could someone check to make sure I didn't mess up somewhere?

http://i43.photobucket.com/albums/e394/risendemonx/potentialcylinder2.jpg

thanks!
 
Last edited by a moderator:
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top