Potentially an easy Calculus proble

  • Thread starter Thread starter chaotixmonjuish
  • Start date Start date
  • Tags Tags
    Calculus
chaotixmonjuish
Messages
284
Reaction score
0
1.) A point (1,2,3) and the equation (x-2)^2+(y-5)^2+(z-5)^2=56, find the line (in parametric equations) from that point to the center of the sphere.

2.) Here is everything I have done

I first made a vector from 1,2,3 to 2,5,5.

<1,3,2>

and then a parametric equation

r(t)=<1,2,3>+t<2,5,5>

was this the right process
 
Physics news on Phys.org
Hi chaotixmonjuish! :smile:
chaotixmonjuish said:
r(t)=<1,2,3>+t<2,5,5>

was this the right process

he he :smile:

that's exactly the right process :approve:

but :rolleyes: … you copied wrong on the last line! :wink:
 
In other words, you have t multiplying the wrong vector.
 
Ah yes, sorry about not responding right away. I got what he meant.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top