If polarizer A is 0° and polarizer B is 30° you get results for each side that come out to a difference of 25%. If you would have switched polarizer A with an orientation of -30° the results for side B would be the same and side A would have to come out to a result that was unknown, but different than B by 75%. If you would have switched polarizer B with a 0° polarizer and compared it to the result of what would have happened if you switched A with a -30°, you don't know what the result of A or B would have been, but you do know the difference would have been 25%. Can you see what I am getting at? The only way you can infer what the results would have been in the last case is if you knew the the input was the same for both sides A and B, and then you could have said the result for B at 0° would have been the same result for A at 0°; and from that information you could have concluded there is a conflict between the actual result and the what would have been result that leads to the spooky action at a distance conclusion.

It just hit me that the results for two polarizers at the same angle are always going to be the same result. So in the last case, I can infer what the results are for both A and B, and can reach the conclusion that communication between the polarizers is necessary for the results to be the way they are.

Thanks for the help! I won't say how many simulations I tried before reaching this conclusion, but as you can see from code snippet, it was more than 32.