MHB Prime and Maximal Ideals in PIDs .... Rotman, AMA Theorem 5.12

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Prime Theorem
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Joseph J. Rotman's book: Advanced Modern Algebra (AMA) and I am currently focused on Section 5.1 Prime Ideals and Maximal Ideals ...

I need some help with understanding the proof of Theorem 5.12 ... ...Theorem 5.12 reads as follows:View attachment 5940
In the above text Rotman writes the following:" ... ... If $$(p) \subseteq J = (a)$$, then $$a|p$$. Hence either $$a$$ and $$p$$ are associates, in which case $$(a) = (p)$$, or $$a$$ is a unit, in which case $$J = (a) = R$$. ... ... ... "My question is as follows:Rotman argues, (as I interpret his argument), that $$a|p$$ implies that either $$a$$ and $$p$$ are associates ... or ... $$a$$ is a unit ...Can someone please explain (slowly and clearly :) ) why this is the case ... ... ?Hope someone can help ... ...

Peter
 
Physics news on Phys.org
Peter said:
I am reading Joseph J. Rotman's book: Advanced Modern Algebra (AMA) and I am currently focused on Section 5.1 Prime Ideals and Maximal Ideals ...

I need some help with understanding the proof of Theorem 5.12 ... ...Theorem 5.12 reads as follows:
In the above text Rotman writes the following:" ... ... If $$(p) \subseteq J = (a)$$, then $$a|p$$. Hence either $$a$$ and $$p$$ are associates, in which case $$(a) = (p)$$, or $$a$$ is a unit, in which case $$J = (a) = R$$. ... ... ... "My question is as follows:Rotman argues, (as I interpret his argument), that $$a|p$$ implies that either $$a$$ and $$p$$ are associates ... or ... $$a$$ is a unit ...Can someone please explain (slowly and clearly :) ) why this is the case ... ... ?Hope someone can help ... ...

Peter

I have been reflecting on my question and believe the answer is something like the following:Firstly ... we are given that $$p$$ is irreducible ...

Now ... $$p$$ irreducible

$$\Longrightarrow p$$ is non-zero and $$p$$ not a unit ... and ... where $$p$$ equals a product,

say, $$p = ra$$ ... then one of $$a$$ and $$r$$ is a unit ... Now, $$a|p \Longrightarrow p = ra$$ for some $$r \in R$$

So then we have that:

$$p$$ irreducible and $$p = ra \Longrightarrow$$ one of $$a$$ and $$r$$ is a unit ...

If $$r$$ is a unit then $$a$$ and $$p$$ are associates ... ...

... otherwise $$a$$ is a unit ...
Can someone confirm that this is correct ... or alternatively point out shortcomings and errors in the analysis ...

Peter
 
I have this solution for you.

First, a notation:
$a\sim b$ for $a,b\in R$ iff $a$ and $b$ are associates iff there is a unit $u\in R$ such that $a=ub$.
$\sim$ is an equivalence relation.

R is a PID and commutative.
Given $a\mid p$ and $(p)$ is an prime ideal. And you want to prove that $a\sim p$ or $a\sim 1$ ($a$ is a unit).

$a\mid p$, so there is a $x\in R$ such that $p=xa$, this means that $xa\in (p)$.
$(p)$ is a prime ideal thus (1) $a\in (p)$ or (2) $x\in (p)$

Suppose (1) $a\in (p)$, then there is an $r\in R$ such that $a=rp$.
Then $p=xrp$, and because $R$ is a domain, $xr=1$, i.e., $x$ is a unit and $a\sim p$.

Suppose (2) $x\in (p)$, then there is an $s\in R$ such that $x=sp$.
Then $p=asp$, and because $R$ is a domain, $as=1$, i.e., $a$ is a unit and $a\sim 1$ $\Box$

You fill in the rest of the proof.
 
steenis said:
I have this solution for you.

First, a notation:
$a\sim b$ for $a,b\in R$ iff $a$ and $b$ are associates iff there is a unit $u\in R$ such that $a=ub$.
$\sim$ is an equivalence relation.

R is a PID and commutative.
Given $a\mid p$ and $(p)$ is an prime ideal. And you want to prove that $a\sim p$ or $a\sim 1$ ($a$ is a unit).

$a\mid p$, so there is a $x\in R$ such that $p=xa$, this means that $xa\in (p)$.
$(p)$ is a prime ideal thus (1) $a\in (p)$ or (2) $x\in (p)$

Suppose (1) $a\in (p)$, then there is an $r\in R$ such that $a=rp$.
Then $p=xrp$, and because $R$ is a domain, $xr=1$, i.e., $x$ is a unit and $a\sim p$.

Suppose (2) $x\in (p)$, then there is an $s\in R$ such that $x=sp$.
Then $p=asp$, and because $R$ is a domain, $as=1$, i.e., $a$ is a unit and $a\sim 1$ $\Box$

You fill in the rest of the proof.
Thanks Steenis ... appreciate your help ...

Just working through your post now ...

Peter
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
Back
Top