Probability Current for Free Particle Wave Function

singular
Messages
41
Reaction score
0
[SOLVED] Probability Current for Free Particle Wave Function

Homework Statement


Find the probability current, J for the free particle wave function. Which direction does the probability current flow?

Homework Equations


J(x,t) = \frac{ih}{4\pi m}\left(\Psi \frac{\partial \Psi^{*}}{\partial x} - \Psi^{*} \frac{\partial \Psi}{\partial x}\right)

\Psi_{k}\left(x, t\right) = Ae^{i\left(kx - \frac{hk^{2}}{4\pi m}t}\right)

The Attempt at a Solution


I won't take the time to put my math into Latex, but I come up with

J(x,t) = \frac{A^{2}hk}{2\pi m}

Is this correct or did I do the complex conjugate wrong?
How would I find the probability current flow direction?
 
Last edited:
Physics news on Phys.org
I just read that the direction is simply the sign of J(x,t) ( - corresponds to left and + corresponds to right). If this is so, that would be great. Can anyone confirm? (it wasnt exactly a textbook source)
 
singular said:
I just read that the direction is simply the sign of J(x,t) ( - corresponds to left and + corresponds to right). If this is so, that would be great. Can anyone confirm? (it wasnt exactly a textbook source)

Yes, that's correct (and you can tell that the wavefunction you have is a plane wave traveling to the right since the sign of the x and t terms in the exponential have opposite signs). Your current looks good if A is assumed real (you should really have |A|^2 there, not A^2 since a gets complex conjugated).
 
kdv said:
Yes, that's correct (and you can tell that the wavefunction you have is a plane wave traveling to the right since the sign of the x and t terms in the exponential have opposite signs). Your current looks good if A is assumed real (you should really have |A|^2 there, not A^2 since a gets complex conjugated).

Great, thank you very much.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top