spitz
- 57
- 0
Homework Statement
Z=X_1+\ldots+X_N, where:
X_i\sim_{iid}\,\text{Exponential}(\lambda)
N\sim\,\text{Geometric}_1(p)
For all i,\,N and X_i are independent.
Find the probability distribution of Z
Homework Equations
G_N(t)=\frac{(1-p)t}{1-pt}
M_X(t)=\frac{\lambda}{\lambda-t}
The Attempt at a Solution
M_Z(z)=G_N(M_X(z))=\frac{(1-p)\left(\frac{\lambda}{\lambda-z}\right)}{1-p\left(\frac{ \lambda}{\lambda-z}\right)}
Z\sim\,\text{Geometric}_1\left(p \frac{ \lambda}{\lambda-z}\right)
Is that even correct? Should I be looking for E[Z] and V[Z] ?