Probability generating function

elmarsur
Messages
33
Reaction score
0

Homework Statement



A random variable X has the generating function
f(z) = 1 / (2-z)^2
Find E(X) and Var(X).


Homework Equations





The Attempt at a Solution



Would anyone explain in simpler terms the notion of the generating function, such that I may be able to solve problems? All I have found were proofs, but nothing of practical use.

Thank you very much!
 
Physics news on Phys.org
Thank you very much, LC!

I imagine that there isn't any significant difference between MGF and PGF (probability), the latter being a special application of the first?!
If so, I still have a couple of questions:
1) Do the formulae apply to all sorts of probability distributions/densities?
2) How do I calculate the variance (formula-wise) for these generating functions (which I understand are not really functions but series of terms)?

Thank you very much in advance.
 
elmarsur said:
Thank you very much, LC!

I imagine that there isn't any significant difference between MGF and PGF (probability), the latter being a special application of the first?!
If so, I still have a couple of questions:
1) Do the formulae apply to all sorts of probability distributions/densities?
2) How do I calculate the variance (formula-wise) for these generating functions (which I understand are not really functions but series of terms)?

Thank you very much in advance.

I posted that reply quickly as I was about to leave for a movie and hadn't noticed you were asking about a probability generating function instead of moment generating function. I deleted the post but apparently you saw it before I deleted it. PGF's are defined for non-negative integer valued random variables. For a PGF PX(z),

E(X) = P'X(1) and
Var(X) = P''X(1) + P'X(1) - (P'X(1))2
 
Last edited:
Thank you very much, LC!
I hope I find you around again when I cry for help.
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top