sanctifier
- 58
- 0
Homework Statement
Question : Prove \varphi (t) = \sum_{i=0}^{ \infty } a_icos(it) is a moment generating function (m.g.f.) and determine its corresponding probability density function (p.d.f.)
when \sum_{i=0}^{ \infty } a_i=1 holds for a_i \geq 0.
Homework Equations
Nothing special.
The Attempt at a Solution
I really don't know what to do with this question, all I know is \varphi (0) = \sum_i p(x_i) = 1 in the discrete case.
For the current one,
\varphi (0) = \sum_{i=0}^{ \infty } a_i = 1
This is a proof? It cannot be so easy, and how to determine the p.d.f. when its m.g.f. is given?
Thank you in advance!