Probability Notes: HK Syllabus & Recommendations

  • Thread starter Thread starter dalcde
  • Start date Start date
  • Tags Tags
    Notes Probability
dalcde
Messages
164
Reaction score
0
I have made some study notes on probability. Please have a look and see if there are recommendations. I'm forced to follow the syllabus in Hong Kong so I had to add some boring and nonsense stuff inside (unfortunately).
 

Attachments

Mathematics news on Phys.org
Proof. By definition, equally likely events have equal
probability of happening. Suppose that the probabilty is p.
Since we are sure that something will happen, the total
probability of the events is equal to 1. Hence we have
Obviously p=1/n. Hence the probability of each event is
equal to 1/n.

This could stand to be more rigorous. You could simply employ some subscripts for your p's. I know that you have demonstrated that probabilities for all events are the same, but it would benefit a first time reader of material on probability to know that you are talking about partitions of a sample space, which are distinct events with their own probabilities that add up to 1. How you have written it is rather vague.

You could perhaps touch upon the idea of independent events. For instance, you give some examples of throwing dice, or, you could limit yourself to one die for simplicity. Throwing a 1 and then a 6 are two independent events, so the probability of this event is the product of the probabilities of the two events that comprise it.
 
I'd like to, but this is intended for year 9 (scondary 3) high school students. I want to introduce some rigor but not too much.
 
Frankly speaking, their primary objective of learning this is to pass exams. I doubt that there would be more than 10 people actually reading the proof.

Thanks for the comment.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top