iafatel
- 4
- 0
Homework Statement
For a particle in the ground state of a rigid box, calculate the probability of finding it between x=0 and x=\frac{L}{3}
Homework Equations
\left|\psi^{2}\right| = \frac{2}{L}Sin^{2}\left(\frac{nx\pi}{L}dx\right)
The Attempt at a Solution
= \frac{2}{L}\int^{\frac{L}{3}}_{0} Sin^{2}\left(\frac{x\pi}{L}\right)
= \frac{2}{L}\int^{\frac{L}{3}}_{0} \frac{1-Cos \left(\frac{2x\pi}{L}\right)}{2}
\frac{1}{L} \int^{\frac{L}{3}}_{0} 1 - \int^{0}_{\frac{L}{3}} Cos \left(\frac{2x\pi}{L}\right)}
\frac{1}{L} \left[ \left|x\right|^{\frac{L}{3}}_{0} - \left|\frac{L}{2\pi}Sin\left(\frac{2x\pi}{L}\right)\right|^{\frac{L}{3}}_{0}\frac{1}{L} \left[ \frac{L}{3}} - \frac{L}{2\pi}Sin\left(\frac{2\pi}{3}\right)\right]
factor out the L
\frac{1}{3}} - \frac{1}{2\pi}Sin\left(\frac{2\pi}{3}\right)\right]
stuck here...when I work it out I get a negative number...am I mising something?
Last edited: