Probability of spin-flip due to scattering

devd
Messages
47
Reaction score
1

Homework Statement


A beam of spin-1/2 particles scatters off of a target consisting of spin-1/2 heavy nuclei. The interaction between the particle and nucleus is given by $$V(\vec{ r})= V_0~\delta (\vec{r})~ \vec{S}_1. \vec{S}_2$$

1) Averaging over initial spin states, find the differential scattering cross section.
2) Assuming the incident particles are polarized along ##+\hat{z}## and target nuclei are polarized along ##-\hat{z}##, find the probability that the spins of the incoming will have flipped.

Homework Equations

The Attempt at a Solution


I can do the first part, by constructing the triplet and singlet states and using the expression for scattering cross section in Born approximation and using the fact that the probabilities of triplet and singlet are 3/4 and 1/4.

I can begin by writing ##\vec{S}_1 . \vec{S}_2=S_{1z}S_{2z}+\frac{1}{2} S_{1+}S_{2-}+S_{1-}S_{2+}##. So, the potential couples the initial ##|\uparrow_{1}>|\downarrow_{2}>## state and the final ## |\downarrow_{1}>|\uparrow_{2}>## state.

For the probability I thought of using Fermi's Golden rule for the rate of transition and from there the probability. But, the whole setup of the scattering problem is essentially time independent, so this makes a bit hesitant. How do I go about it?
 
Physics news on Phys.org
I read the problem as asking to compare the probability of detecting the scattered particle as flipped with that of detecting it in its initial spin state.

devd said:
I can begin by writing ##\vec{S}_1 . \vec{S}_2=S_{1z}S_{2z}+\frac{1}{2} S_{1+}S_{2-}+S_{1-}S_{2+}##.
There is a little mistake here.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top