Probability of winning dice game

  • Context: MHB 
  • Thread starter Thread starter TheFallen018
  • Start date Start date
  • Tags Tags
    Dice Game Probability
Click For Summary
SUMMARY

The probability of winning a dice game involving two six-sided dice can be calculated using specific probabilities for rolling totals from 2 to 12. The immediate win probabilities are derived from $p(7)$ and $p(11)$, while the overall probability of winning later is calculated using the formula $p(x)\dfrac{p(x)}{p(x)+p(7)}$. After evaluating these probabilities, the overall chance of winning is determined to be $\dfrac{244}{495}$, approximately 0.4929. This method effectively simplifies the calculation of winning probabilities in the game.

PREREQUISITES
  • Understanding of basic probability concepts
  • Familiarity with rolling two six-sided dice
  • Knowledge of probability distributions
  • Ability to manipulate fractions and ratios
NEXT STEPS
  • Research the derivation of the formula $p(x)\dfrac{p(x)}{p(x)+p(7)}$ in probability theory
  • Explore similar probability problems involving dice games
  • Learn about Markov chains and their application in probability
  • Study the concept of conditional probability in depth
USEFUL FOR

Mathematicians, game theorists, and anyone interested in probability calculations related to games of chance, particularly those involving dice.

TheFallen018
Messages
52
Reaction score
0
Hey, so I've got this problem that I'm trying to figure out. I've worked out something that I think is probably right through simulation, but I'm not really sure how to tackle it from a purely mathematical probability perspective. So, would anyone know how I should approach this? I've tried a few different things, but my two answers tend to conflict a little. Thanks,

View attachment 8168
 

Attachments

  • Screenshot_12.jpg
    Screenshot_12.jpg
    75.3 KB · Views: 149
Physics news on Phys.org
The starting point (which I guess you already know) is to make a list of the probabilities $p(x)$ of rolling a total of $x$ with the two dice, where $x$ goes from $2$ to $12$. These are $$\begin{array}{r|ccccccccccc}x& 2&3&4&5&6 &7&8&9&10 &11&12\\ \hline p(x) & \frac1{36} & \frac2{36} & \frac3{36} & \frac4{36} & \frac5{36} & \frac6{36} & \frac5{36} & \frac4{36} & \frac3{36} & \frac2{36} & \frac1{36} \end{array}.$$

The probability of an immediate win on the first roll is $p(7)+p(11)$. To win at a later stage, you first need to roll an $x$ (where $x$ is $4,5,6,8,9$ or $10$). You then need to roll another $x$ before rolling a $7$. The probability of those two things happening is $p(x)\dfrac{p(x)}{p(x)+p(7)}$. Putting in the numbers, and adding the various probabilities, I get the overall probability of a win to be $\dfrac{244}{495} \approx 0.49292929\ldots$.
 
Opalg said:
The starting point (which I guess you already know) is to make a list of the probabilities $p(x)$ of rolling a total of $x$ with the two dice, where $x$ goes from $2$ to $12$. These are $$\begin{array}{r|ccccccccccc}x& 2&3&4&5&6 &7&8&9&10 &11&12\\ \hline p(x) & \frac1{36} & \frac2{36} & \frac3{36} & \frac4{36} & \frac5{36} & \frac6{36} & \frac5{36} & \frac4{36} & \frac3{36} & \frac2{36} & \frac1{36} \end{array}.$$

The probability of an immediate win on the first roll is $p(7)+p(11)$. To win at a later stage, you first need to roll an $x$ (where $x$ is $4,5,6,8,9$ or $10$). You then need to roll another $x$ before rolling a $7$. The probability of those two things happening is $p(x)\dfrac{p(x)}{p(x)+p(7)}$. Putting in the numbers, and adding the various probabilities, I get the overall probability of a win to be $\dfrac{244}{495} \approx 0.49292929\ldots$.

Wow, that works really well. I thought it was going to be much more complicated and messy than that, which is a beautiful solution. I'm curious though, is that equation $p(x)\dfrac{p(x)}{p(x)+p(7)}$ something that you derived for this, or is this a standard formula for similar problems.If it's something that you derived, would you be able to explain how you came up with it? If it's a standard equation, would you happen to know it's name? I'd love to understand better how and why it works. Thanks
 
TheFallen018 said:
Wow, that works really well. I thought it was going to be much more complicated and messy than that, which is a beautiful solution. I'm curious though, is that equation $p(x)\dfrac{p(x)}{p(x)+p(7)}$ something that you derived for this, or is this a standard formula for similar problems.If it's something that you derived, would you be able to explain how you came up with it? If it's a standard equation, would you happen to know it's name? I'd love to understand better how and why it works. Thanks
In the expression ${\color {red} p(x)}{\color {green}\dfrac{p(x)}{p(x)+p(7)}}$, the red $\color {red} p(x)$ gives the probability that the first roll of the dice gives the value $x$. The green fraction represents the probability of rolling $x$ again before rolling a $7$. My argument for that is that after rolling the first $x$, you can completely disregard any subsequent rolls until either an $x$ or a $7$ turns up. The only question is, which one of those will appear first. The relative probabilities of $x$ and $7$ are in the proportion $p(x)$ to $p(7)$. So out of a combined probability of $p(x) + p(7)$, the probability of an $x$ is $\dfrac{p(x)}{p(x)+p(7)}$, and the probability of a $7$ is $\dfrac{p(7)}{p(x)+p(7)}$.

I hope that makes sense.
 

Similar threads

  • · Replies 41 ·
2
Replies
41
Views
6K
  • · Replies 16 ·
Replies
16
Views
4K
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 2 ·
Replies
2
Views
7K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 9 ·
Replies
9
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 29 ·
Replies
29
Views
4K
  • · Replies 12 ·
Replies
12
Views
4K