MHB Probability of winning dice game

AI Thread Summary
The discussion focuses on calculating the probability of winning a dice game using mathematical probability rather than simulation. The probabilities of rolling totals with two dice are outlined, with an immediate win occurring on rolling a 7 or 11. For later wins, players must roll a specific number again before rolling a 7, leading to the derived probability formula p(x) * (p(x)/(p(x)+p(7))). The overall probability of winning is calculated to be approximately 0.4929. The conversation also explores whether the formula is standard or derived, emphasizing the reasoning behind the probability calculations.
TheFallen018
Messages
52
Reaction score
0
Hey, so I've got this problem that I'm trying to figure out. I've worked out something that I think is probably right through simulation, but I'm not really sure how to tackle it from a purely mathematical probability perspective. So, would anyone know how I should approach this? I've tried a few different things, but my two answers tend to conflict a little. Thanks,

View attachment 8168
 

Attachments

  • Screenshot_12.jpg
    Screenshot_12.jpg
    75.3 KB · Views: 137
Mathematics news on Phys.org
The starting point (which I guess you already know) is to make a list of the probabilities $p(x)$ of rolling a total of $x$ with the two dice, where $x$ goes from $2$ to $12$. These are $$\begin{array}{r|ccccccccccc}x& 2&3&4&5&6 &7&8&9&10 &11&12\\ \hline p(x) & \frac1{36} & \frac2{36} & \frac3{36} & \frac4{36} & \frac5{36} & \frac6{36} & \frac5{36} & \frac4{36} & \frac3{36} & \frac2{36} & \frac1{36} \end{array}.$$

The probability of an immediate win on the first roll is $p(7)+p(11)$. To win at a later stage, you first need to roll an $x$ (where $x$ is $4,5,6,8,9$ or $10$). You then need to roll another $x$ before rolling a $7$. The probability of those two things happening is $p(x)\dfrac{p(x)}{p(x)+p(7)}$. Putting in the numbers, and adding the various probabilities, I get the overall probability of a win to be $\dfrac{244}{495} \approx 0.49292929\ldots$.
 
Opalg said:
The starting point (which I guess you already know) is to make a list of the probabilities $p(x)$ of rolling a total of $x$ with the two dice, where $x$ goes from $2$ to $12$. These are $$\begin{array}{r|ccccccccccc}x& 2&3&4&5&6 &7&8&9&10 &11&12\\ \hline p(x) & \frac1{36} & \frac2{36} & \frac3{36} & \frac4{36} & \frac5{36} & \frac6{36} & \frac5{36} & \frac4{36} & \frac3{36} & \frac2{36} & \frac1{36} \end{array}.$$

The probability of an immediate win on the first roll is $p(7)+p(11)$. To win at a later stage, you first need to roll an $x$ (where $x$ is $4,5,6,8,9$ or $10$). You then need to roll another $x$ before rolling a $7$. The probability of those two things happening is $p(x)\dfrac{p(x)}{p(x)+p(7)}$. Putting in the numbers, and adding the various probabilities, I get the overall probability of a win to be $\dfrac{244}{495} \approx 0.49292929\ldots$.

Wow, that works really well. I thought it was going to be much more complicated and messy than that, which is a beautiful solution. I'm curious though, is that equation $p(x)\dfrac{p(x)}{p(x)+p(7)}$ something that you derived for this, or is this a standard formula for similar problems.If it's something that you derived, would you be able to explain how you came up with it? If it's a standard equation, would you happen to know it's name? I'd love to understand better how and why it works. Thanks
 
TheFallen018 said:
Wow, that works really well. I thought it was going to be much more complicated and messy than that, which is a beautiful solution. I'm curious though, is that equation $p(x)\dfrac{p(x)}{p(x)+p(7)}$ something that you derived for this, or is this a standard formula for similar problems.If it's something that you derived, would you be able to explain how you came up with it? If it's a standard equation, would you happen to know it's name? I'd love to understand better how and why it works. Thanks
In the expression ${\color {red} p(x)}{\color {green}\dfrac{p(x)}{p(x)+p(7)}}$, the red $\color {red} p(x)$ gives the probability that the first roll of the dice gives the value $x$. The green fraction represents the probability of rolling $x$ again before rolling a $7$. My argument for that is that after rolling the first $x$, you can completely disregard any subsequent rolls until either an $x$ or a $7$ turns up. The only question is, which one of those will appear first. The relative probabilities of $x$ and $7$ are in the proportion $p(x)$ to $p(7)$. So out of a combined probability of $p(x) + p(7)$, the probability of an $x$ is $\dfrac{p(x)}{p(x)+p(7)}$, and the probability of a $7$ is $\dfrac{p(7)}{p(x)+p(7)}$.

I hope that makes sense.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top