Probability of winning dice game

  • Context: MHB 
  • Thread starter Thread starter TheFallen018
  • Start date Start date
  • Tags Tags
    Dice Game Probability
Click For Summary

Discussion Overview

The discussion revolves around the probability of winning a dice game involving two six-sided dice. Participants explore both simulation results and mathematical approaches to calculate the overall probability of winning, including immediate wins and subsequent rolls.

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Technical explanation

Main Points Raised

  • One participant mentions using simulation to estimate the probability but seeks a mathematical approach due to conflicting results.
  • Another participant provides a detailed breakdown of the probabilities of rolling totals with two dice, presenting a table of probabilities for sums from 2 to 12.
  • The same participant calculates the probability of winning on the first roll and later stages, arriving at an overall probability of winning of approximately 0.4929.
  • A later reply expresses appreciation for the solution's elegance and inquires about the derivation of the formula $p(x)\dfrac{p(x)}{p(x)+p(7)}$, asking if it is a standard formula or a derived one.
  • The explanation of the formula is provided, noting that it represents the probability of rolling a specific value $x$ again before rolling a 7, based on the relative probabilities of the outcomes.

Areas of Agreement / Disagreement

Participants express agreement on the calculations presented, but there is no consensus on whether the formula used is standard or derived, as well as on the broader implications of the findings.

Contextual Notes

The discussion does not resolve the uncertainty regarding the derivation of the formula and its applicability to similar problems.

TheFallen018
Messages
52
Reaction score
0
Hey, so I've got this problem that I'm trying to figure out. I've worked out something that I think is probably right through simulation, but I'm not really sure how to tackle it from a purely mathematical probability perspective. So, would anyone know how I should approach this? I've tried a few different things, but my two answers tend to conflict a little. Thanks,

View attachment 8168
 

Attachments

  • Screenshot_12.jpg
    Screenshot_12.jpg
    75.3 KB · Views: 152
Physics news on Phys.org
The starting point (which I guess you already know) is to make a list of the probabilities $p(x)$ of rolling a total of $x$ with the two dice, where $x$ goes from $2$ to $12$. These are $$\begin{array}{r|ccccccccccc}x& 2&3&4&5&6 &7&8&9&10 &11&12\\ \hline p(x) & \frac1{36} & \frac2{36} & \frac3{36} & \frac4{36} & \frac5{36} & \frac6{36} & \frac5{36} & \frac4{36} & \frac3{36} & \frac2{36} & \frac1{36} \end{array}.$$

The probability of an immediate win on the first roll is $p(7)+p(11)$. To win at a later stage, you first need to roll an $x$ (where $x$ is $4,5,6,8,9$ or $10$). You then need to roll another $x$ before rolling a $7$. The probability of those two things happening is $p(x)\dfrac{p(x)}{p(x)+p(7)}$. Putting in the numbers, and adding the various probabilities, I get the overall probability of a win to be $\dfrac{244}{495} \approx 0.49292929\ldots$.
 
Opalg said:
The starting point (which I guess you already know) is to make a list of the probabilities $p(x)$ of rolling a total of $x$ with the two dice, where $x$ goes from $2$ to $12$. These are $$\begin{array}{r|ccccccccccc}x& 2&3&4&5&6 &7&8&9&10 &11&12\\ \hline p(x) & \frac1{36} & \frac2{36} & \frac3{36} & \frac4{36} & \frac5{36} & \frac6{36} & \frac5{36} & \frac4{36} & \frac3{36} & \frac2{36} & \frac1{36} \end{array}.$$

The probability of an immediate win on the first roll is $p(7)+p(11)$. To win at a later stage, you first need to roll an $x$ (where $x$ is $4,5,6,8,9$ or $10$). You then need to roll another $x$ before rolling a $7$. The probability of those two things happening is $p(x)\dfrac{p(x)}{p(x)+p(7)}$. Putting in the numbers, and adding the various probabilities, I get the overall probability of a win to be $\dfrac{244}{495} \approx 0.49292929\ldots$.

Wow, that works really well. I thought it was going to be much more complicated and messy than that, which is a beautiful solution. I'm curious though, is that equation $p(x)\dfrac{p(x)}{p(x)+p(7)}$ something that you derived for this, or is this a standard formula for similar problems.If it's something that you derived, would you be able to explain how you came up with it? If it's a standard equation, would you happen to know it's name? I'd love to understand better how and why it works. Thanks
 
TheFallen018 said:
Wow, that works really well. I thought it was going to be much more complicated and messy than that, which is a beautiful solution. I'm curious though, is that equation $p(x)\dfrac{p(x)}{p(x)+p(7)}$ something that you derived for this, or is this a standard formula for similar problems.If it's something that you derived, would you be able to explain how you came up with it? If it's a standard equation, would you happen to know it's name? I'd love to understand better how and why it works. Thanks
In the expression ${\color {red} p(x)}{\color {green}\dfrac{p(x)}{p(x)+p(7)}}$, the red $\color {red} p(x)$ gives the probability that the first roll of the dice gives the value $x$. The green fraction represents the probability of rolling $x$ again before rolling a $7$. My argument for that is that after rolling the first $x$, you can completely disregard any subsequent rolls until either an $x$ or a $7$ turns up. The only question is, which one of those will appear first. The relative probabilities of $x$ and $7$ are in the proportion $p(x)$ to $p(7)$. So out of a combined probability of $p(x) + p(7)$, the probability of an $x$ is $\dfrac{p(x)}{p(x)+p(7)}$, and the probability of a $7$ is $\dfrac{p(7)}{p(x)+p(7)}$.

I hope that makes sense.
 

Similar threads

  • · Replies 41 ·
2
Replies
41
Views
6K
  • · Replies 16 ·
Replies
16
Views
4K
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 2 ·
Replies
2
Views
8K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 9 ·
Replies
9
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 29 ·
Replies
29
Views
4K
  • · Replies 12 ·
Replies
12
Views
4K