MHB Probability of winning dice game

AI Thread Summary
The discussion focuses on calculating the probability of winning a dice game using mathematical probability rather than simulation. The probabilities of rolling totals with two dice are outlined, with an immediate win occurring on rolling a 7 or 11. For later wins, players must roll a specific number again before rolling a 7, leading to the derived probability formula p(x) * (p(x)/(p(x)+p(7))). The overall probability of winning is calculated to be approximately 0.4929. The conversation also explores whether the formula is standard or derived, emphasizing the reasoning behind the probability calculations.
TheFallen018
Messages
52
Reaction score
0
Hey, so I've got this problem that I'm trying to figure out. I've worked out something that I think is probably right through simulation, but I'm not really sure how to tackle it from a purely mathematical probability perspective. So, would anyone know how I should approach this? I've tried a few different things, but my two answers tend to conflict a little. Thanks,

View attachment 8168
 

Attachments

  • Screenshot_12.jpg
    Screenshot_12.jpg
    75.3 KB · Views: 141
Mathematics news on Phys.org
The starting point (which I guess you already know) is to make a list of the probabilities $p(x)$ of rolling a total of $x$ with the two dice, where $x$ goes from $2$ to $12$. These are $$\begin{array}{r|ccccccccccc}x& 2&3&4&5&6 &7&8&9&10 &11&12\\ \hline p(x) & \frac1{36} & \frac2{36} & \frac3{36} & \frac4{36} & \frac5{36} & \frac6{36} & \frac5{36} & \frac4{36} & \frac3{36} & \frac2{36} & \frac1{36} \end{array}.$$

The probability of an immediate win on the first roll is $p(7)+p(11)$. To win at a later stage, you first need to roll an $x$ (where $x$ is $4,5,6,8,9$ or $10$). You then need to roll another $x$ before rolling a $7$. The probability of those two things happening is $p(x)\dfrac{p(x)}{p(x)+p(7)}$. Putting in the numbers, and adding the various probabilities, I get the overall probability of a win to be $\dfrac{244}{495} \approx 0.49292929\ldots$.
 
Opalg said:
The starting point (which I guess you already know) is to make a list of the probabilities $p(x)$ of rolling a total of $x$ with the two dice, where $x$ goes from $2$ to $12$. These are $$\begin{array}{r|ccccccccccc}x& 2&3&4&5&6 &7&8&9&10 &11&12\\ \hline p(x) & \frac1{36} & \frac2{36} & \frac3{36} & \frac4{36} & \frac5{36} & \frac6{36} & \frac5{36} & \frac4{36} & \frac3{36} & \frac2{36} & \frac1{36} \end{array}.$$

The probability of an immediate win on the first roll is $p(7)+p(11)$. To win at a later stage, you first need to roll an $x$ (where $x$ is $4,5,6,8,9$ or $10$). You then need to roll another $x$ before rolling a $7$. The probability of those two things happening is $p(x)\dfrac{p(x)}{p(x)+p(7)}$. Putting in the numbers, and adding the various probabilities, I get the overall probability of a win to be $\dfrac{244}{495} \approx 0.49292929\ldots$.

Wow, that works really well. I thought it was going to be much more complicated and messy than that, which is a beautiful solution. I'm curious though, is that equation $p(x)\dfrac{p(x)}{p(x)+p(7)}$ something that you derived for this, or is this a standard formula for similar problems.If it's something that you derived, would you be able to explain how you came up with it? If it's a standard equation, would you happen to know it's name? I'd love to understand better how and why it works. Thanks
 
TheFallen018 said:
Wow, that works really well. I thought it was going to be much more complicated and messy than that, which is a beautiful solution. I'm curious though, is that equation $p(x)\dfrac{p(x)}{p(x)+p(7)}$ something that you derived for this, or is this a standard formula for similar problems.If it's something that you derived, would you be able to explain how you came up with it? If it's a standard equation, would you happen to know it's name? I'd love to understand better how and why it works. Thanks
In the expression ${\color {red} p(x)}{\color {green}\dfrac{p(x)}{p(x)+p(7)}}$, the red $\color {red} p(x)$ gives the probability that the first roll of the dice gives the value $x$. The green fraction represents the probability of rolling $x$ again before rolling a $7$. My argument for that is that after rolling the first $x$, you can completely disregard any subsequent rolls until either an $x$ or a $7$ turns up. The only question is, which one of those will appear first. The relative probabilities of $x$ and $7$ are in the proportion $p(x)$ to $p(7)$. So out of a combined probability of $p(x) + p(7)$, the probability of an $x$ is $\dfrac{p(x)}{p(x)+p(7)}$, and the probability of a $7$ is $\dfrac{p(7)}{p(x)+p(7)}$.

I hope that makes sense.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top