MHB Probability that current could pass through

Click For Summary
The discussion focuses on calculating the probability of current passing through a series of independent switches (a, b, c, d, e) with a probability p for each switch. Two cases are considered: one where switch E is closed and another where it is open, leading to different probability expressions. The original calculation yields an overall probability of 2p^5 - 5p^4 + 2p^3 + 2p^2, which is confirmed as correct. The alternative method discussed involves counting the configurations of open and closed switches to arrive at the same result. The conclusion affirms that the initial calculation is accurate, countering claims from peers.
pp123123
Messages
5
Reaction score
0
Hi guys. Here's the problem.View attachment 1981
I need to determine the probability that the current could go from left to right given that there is a probability of p for each independent switch named a,b,c,d and e.

I have tried to solve this but I have no idea which part I am getting off the right track. Here is what I am trying to do.

Case I: Assume Switch E is closed so I have a probability of
P((AB) or (CD))=P(AB)+P(CD)-P(AB and CD)=2p^2-p^4

Case II: Assume Switch E is opened so I have a probability of
P((A or C) and (B or D))=(P(A)+P(C)-P(AC))(P(B)+P(D)-P(BD))=(2p-p^2)^2

so overall probability is (1-p)(2p^2-p^4)+p(2p-p^2)^2 which could be simplified to 2p^5-5p^4+2p^3+2p^2

however some friends of mine told be that it should be p^5-5p^4+2p^3+2p^2. I hope to know what's wrong in my calculation. Thanksss!
 

Attachments

  • mathhelp.jpg
    mathhelp.jpg
    6.3 KB · Views: 103
Mathematics news on Phys.org
pp123123 said:
Hi guys. Here's the problem.View attachment 1981
I need to determine the probability that the current could go from left to right given that there is a probability of p for each independent switch named a,b,c,d and e.

I have tried to solve this but I have no idea which part I am getting off the right track. Here is what I am trying to do.

Case I: Assume Switch E is closed so I have a probability of
P((AB) or (CD))=P(AB)+P(CD)-P(AB and CD)=2p^2-p^4

Case II: Assume Switch E is opened so I have a probability of
P((A or C) and (B or D))=(P(A)+P(C)-P(AC))(P(B)+P(D)-P(BD))=(2p-p^2)^2

so overall probability is (1-p)(2p^2-p^4)+p(2p-p^2)^2 which could be simplified to 2p^5-5p^4+2p^3+2p^2

however some friends of mine told be that it should be p^5-5p^4+2p^3+2p^2. I hope to know what's wrong in my calculation. Thanksss!
Hi pp123123, and welcome to MHB! Short story: you are right and your friends are wrong.

Longer explanation: Your method is correct. Another (more laborious) way to do the calculation is to count the number of open switches.

If all five switches are on then the current gets through. Probability of this is $p^5$.

There are five ways in which four switches can be on, and the current gets through in each case. Probability here is $5p^4(1-p)$.

There are ten ways in which three switches can be on, and the current gets through in eight of these cases. (The only ways in which it cannot get through is if both of the switches on the left part of the circuit, or both of the switches on the right part of the circuit, are off.) Probability here is $8p^3(1-p)^2$.

There are ten ways in which two switches can be on, and the current gets through in two of these cases. (The only ways in which it can get through is if both of the switches on the upper part of the circuit, or both of the switches on the lower part of the circuit, are on.) Probability here is $2p^2(1-p)^3$.

If only one switch, or none at all, is open, then the current cannot get through.

Thus the overall probability is $p^5 + 5p^4(1-p) + 8p^3(1-p)^2 + 2p^2(1-p)^3$. When you multiply out the brackets, this simplifies to $2p^5-5p^4+2p^3+2p^2$.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K
Replies
2
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K