If we keep the yellow-underlined term in post #6, we have
We are interested in the middle two terms. Since they have a common factor of ##\frac{e}{2mc}##, I will leave out this factor for now. So, we want to consider $$\nabla \cdot (\mathbf A \psi) + \mathbf A \cdot \nabla \psi$$ which may be written as $$ (\nabla \cdot \mathbf A) \psi+2\mathbf A \cdot \nabla \psi \,\,\,\,\,\,\,\, (1)$$
Similarly, the equation for ##\large \frac{\partial \psi^*}{\partial t}##, will yield $$ (\nabla \cdot \mathbf A) \psi^*+2\mathbf A \cdot \nabla \psi^* \,\,\,\,\,\,\,\, (2)$$
Multiply (1) by ##\psi^*##, (2) by ##\psi##, and add $$\psi^* \left[( \nabla \cdot \mathbf A) \psi+2\mathbf A \cdot \nabla \psi \right] + \psi \left[( \nabla \cdot \mathbf A) \psi^*+2\mathbf A \cdot \nabla \psi^* \right]$$ $$=2(\nabla \cdot \mathbf A) |\psi|^2 + 2\psi^* \mathbf A \cdot \nabla \psi + 2\psi \mathbf A \cdot \nabla \psi^*$$ $$=2\left[ (\nabla \cdot \mathbf A) |\psi|^2 + \mathbf A \cdot \nabla(\psi^*\psi)\right] = 2\nabla \cdot (\mathbf A |\psi|^2)$$ Putting back the factor ##\frac{e}{2mc}##, gives $$\nabla \cdot \left ( \frac{e}{mc}\mathbf A |\psi|^2 \right)$$ This is what we want for one of the terms of ##\mathbf j##.