Problem in finding the radius of convergence of a series

Amaelle
Messages
309
Reaction score
54
Homework Statement
look at the image
Relevant Equations
asymptotic behaviour, raduis of convergence
Good day
1612550922783.png

I'm trying to find the radius of this serie, and here is the solution
1612551034715.png

I just have problem understanding why 2^(n/2) is little o of 3^(n/3) ?

many thanks in advance

Best regards!
 
Physics news on Phys.org
Amaelle said:
why 2^(n/2) is little o of 3^(n/3)
$$2^{n/2}= 1.4142^n \qquad 3^{n/3}= 1.4442^n \quad \Rightarrow \quad 2^{n/2} < 3^{n/3}$$
 
  • Like
  • Love
Likes jim mcnamara and Amaelle
[2^{n/2}+3^{n/3}+n^7]^{1/n}=3^{1/3}[1+k^n+\frac{n^7}{3^{n/3}}]^{1/n}
where
k=\frac{2^{1/2}}{3^{1/3}}
k^6=\frac{8}{9}&lt;1
so k<1. As n##\rightarrow +\infty##
[1+k^n+\frac{n^7}{3^{n/3}}]^{1/n} \rightarrow 1
 
Last edited:
anuttarasammyak said:
[2^{n/2}+3^{n/3}+n^7]^{1/n}=3^{1/3}[1+k^n+\frac{n^7}{3^{n/3}}]^{1/n}
where
k=\frac{2^{1/2}}{3^{1/3}}
k^6=\frac{8}{9}&lt;1
so k<1. As n##\rightarrow +\infty##
[1+k^n+\frac{n^7}{3^{n/3}}]^{1/n} \rightarrow 1
So beautifully explained!, thanks a million!
 
BvU said:
$$2^{n/2}= 1.4142^n \qquad 3^{n/3}= 1.4442^n \quad \Rightarrow \quad 2^{n/2} < 3^{n/3}$$
Nice shot! thanks a million!
 
Last edited by a moderator:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top