Problem on Pressure due to Surface tension

AI Thread Summary
The discussion centers on solving a pressure problem related to surface tension in a balloon, specifically how to equate forces acting on different cross sections. One participant questions the use of factors in their calculations, suggesting that the presence of two surfaces should double the force exerted by surface tension. However, the definitions of ##\sigma_L## and ##\sigma_t## as forces per unit length do not include a factor of two, leading to some confusion. It is clarified that the issue is more about internal stresses in the balloon's material rather than traditional surface tension. Ultimately, consistency in definitions is emphasized as the key to resolving the problem.
phantomvommand
Messages
287
Reaction score
39
Homework Statement
Please see the attached image.
Relevant Equations
##\gamma = \frac F L##
##P = \frac F A##
Screenshot 2021-05-11 at 11.26.21 PM.png


The method to solving this is to equate forces along a portion of the balloon through which ##\sigma_L## acts, and another portion through which ##\sigma_t## acts. The former potion should be a circular cross section of the cylinder, while the latter will be a rectangular cross section. You will thus get the following:

Screenshot 2021-05-11 at 11.30.54 PM.png

I did exactly the above, except that instead of having ##2\pi r \sigma_L## and ##2x\sigma_t## on the RHS, I had ##4\pi r \sigma_L## and ##4x\sigma_t##. Am I right on this? Because I think that in either case, there are 2 surfaces (inner surface of balloon and outer surface of balloon), resulting in double the force exerted by surface tension.
 
Physics news on Phys.org
In the problem they've defined ##\sigma_L## and ##\sigma_t## as forces per unit length of the boundary between two portions in the longitudinal and hoop directions respectively. With that definition there's no factor of 2. Although you're right to be a little skeptical, because there are indeed two surfaces and usually the longitudinal surface tension ##\gamma_L## for instance would be defined such that e.g. ##\pi r^2 P' = 4\pi r \gamma_L##, i.e. with the factor of two included.

The reason for the ambiguity is that it's not really a surface tension problem. It's really instead internal stresses in the rubber holding the thing together (although there is a strong analogy). For actual surface tension problems, ##\gamma## is defined thermodynamically as ##\gamma = \partial E / \partial A## where ##E## is the interface energy between two phases and ##A## is the total area of the interface between those two phases, and it's important to account for all of the interfaces.

Here it doesn't really matter how you define ##\sigma_L## and ##\sigma_t## just so long as you're consistent because at the end you're taking a ratio. So I wouldn't worry about it too much! :smile:
 
  • Like
Likes phantomvommand
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top