Problem with a contour integral

orion141
Messages
8
Reaction score
0
I was w=kind of confused as of how to go about solving this integeal using complex methods. it is the Integral from 0 to infinity of{dx((x^2)(Sin[xr])}/[((x^2)+(m^2))x*r] where m and r are real variables. I tried to choose a half "donut" in the upper part of the plane with radii or p and R. Then I tried to break up the contour integral into paths 1, 2, 3, 4. is this the correct way to go about this? Thanks
 
Physics news on Phys.org
I think that i figured it out... I found the residue at (im) as this is the only residue that contributes to the integral (-im is not in the contour and R(0)=0). Does this sound right? Thanks
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top