LaTeX Problem with compiling formula by LaTeX

  • Thread starter Thread starter linderox
  • Start date Start date
  • Tags Tags
    Formula Latex
AI Thread Summary
The discussion centers on formatting complex mathematical equations in LaTeX, specifically addressing issues with line breaks and bracket alignment. Users are encountering problems with the `split` and `eqnarray` environments, particularly when trying to split equations across multiple lines while maintaining proper alignment and bracket sizes. Key points include the necessity of using alignment characters (`&`) to ensure correct formatting and the importance of closing brackets properly to avoid errors. Suggestions include using phantom delimiters to manage brackets across lines and employing dummy brackets to pair unmatched ones. Additionally, there are recommendations for using `bigr` and `bigl` commands to ensure consistent bracket sizes when they appear on different lines. The conversation highlights the complexities of typesetting lengthy mathematical expressions and the need for careful attention to detail in LaTeX syntax.
linderox
Messages
9
Reaction score
0
I read a lot literature how to provide dividing of the formulas to new lines,but it's work just on a short one good like 1st one and doesn't on main (2nd one)
Code:
\begin{equation}\begin{split}
\Psi = & \cos kz + i\sin kz + {} \\
& {} + \frac{f(\theta)}{r}
(\cos kr + i\sin kr)
\end{split}\end{equation}

I try different ways used {split} but everything stopped on the 2nd "\\". Can anybody say me why?

Code:
\begin{equation}\begin{split}
U = U_0\cos[c_1 \cos(\omega t) + c_2 cos(\omega_1 t) + \phi] \\
=U_0 \cos\phi\left[|J_0(c_1)J_0(c_2)| + \sum_n |2J_0(c_2 )J_{2n}(c_1)|\cos 2n\omega t \\
+\sum_k|2J_0(c_1 )J_{2k}(c_2)|\cos 2k\omega_1 t + \sum_n\sum_k |2J_2n(c_1)J_{2k}(c_2)| \cos [2(k\omega_1 — n\omega)t] \\
+\sum_n \sum_k|2J_{2n}(c_1)J_{2k}(c_2)|\cos [2(k\omega_1 + n\omega)t] \\
+\sum_n \sum_k|J_{2n-1}(c_1)J_{2k-1}(c_2)|\cos[(2k —1)\omega_1—(2n — 1)\omega]t \\
+\sum_n \sum_k|J_{2n-1}(c_1)J_{2k-1}(c_2)|\cos[(2k —1)\omega_1+(2n — 1)\omega]t\right] \\
+U_0\sin\phi\left[\sum_n |2J_0(c_2)J_{2n-1}(c_1)|\cos[(2n—1)\omega t] \\
+\sum_k | 2J_0(c_1)J_{2k-1}(c_2)|\cos[(2k — 1)\omega_1 t] \\
+\sum_n \sum_k|2J_{2n-1}(c_1)J_{2k}(c_2)|\cos[2k\omega_1—(2n—1)\omega]t \\
+\sum_n \sum_k|2J_{2n-1}(c_1)J_{2k}(c_2)|\cos[2k\omega_1+(2n—1)\omega]t \\
+\sum_n \sum_k|J_{2n}(c_1)J_{2k-1}(c_2)|\cos [(2k—1)\omega_1—2n\omega]t \\
+\sum_n \sum_k|J_{2n}(c_1)J_{2k-1}(c_2)|\cos [(2k—1)\omega_1+2n\omega]t\right]
\end{split}\end{equation}
 
Last edited:
Physics news on Phys.org
Well, the most obvious problem is you forgot the alignment character (&). I could believe that would result in the bottom part of your equation sitting a few feet past the right margin.
 
can you write right version here?
this version for example doesn't work too!
Code:
\begin{eqnarray*}
U=U_0\cos[c_1 \cos(\omega t) + c_2 cos(\omega_1 t) + \phi] \\
& {} U=U_0 \cos\phi\left[|J_0(c_1)J_0(c_2)| + \sum_n |2J_0(c_2 )J_{2n}(c_1)|\cos 2n\omega t \\
& {} +\sum_k|2J_0(c_1 )J_{2k}(c_2)|\cos 2k\omega_1 t + \sum_n\sum_k |2J_2n(c_1)J_{2k}(c_2)| \cos [2(k\omega_1 — n\omega)t] \right]
\end{eqnarray*}
 
I would imagine that your problem is that you are trying to split equations before you have closed the brackets (i.e. you have a \left[ but no \right] before the \\). A way to remedy this is to use phantom delimiters (\left. and \right.) , so your input would read (with additions in red):

Code:
\begin{equation}\begin{split}
U = U_0\cos[c_1 \cos(\omega t) + c_2 cos(\omega_1 t) + \phi] \\
=U_0 \cos\phi\left[|J_0(c_1)J_0(c_2)| + \sum_n |2J_0(c_2 )J_{2n}(c_1)|\cos 2n\omega t \right.[/color]\\
+\sum_k|2J_0(c_1 )J_{2k}(c_2)|\cos 2k\omega_1 t + \sum_n\sum_k |2J_2n(c_1)J_{2k}(c_2)| \cos [2(k\omega_1 — n\omega)t] \\
+\sum_n \sum_k|2J_{2n}(c_1)J_{2k}(c_2)|\cos [2(k\omega_1 + n\omega)t] \\
+\sum_n \sum_k|J_{2n-1}(c_1)J_{2k-1}(c_2)|\cos[(2k —1)\omega_1—(2n — 1)\omega]t \\
+\sum_n \sum_k|J_{2n-1}(c_1)J_{2k-1}(c_2)|\cos[(2k —1)\omega_1+(2n — 1)\omega]t\right] \\
+U_0\sin\phi\left[\sum_n |2J_0(c_2)J_{2n-1}(c_1)|\cos[(2n—1)\omega t] \\
+\sum_k | 2J_0(c_1)J_{2k-1}(c_2)|\cos[(2k — 1)\omega_1 t] \\
+\sum_n \sum_k|2J_{2n-1}(c_1)J_{2k}(c_2)|\cos[2k\omega_1—(2n—1)\omega]t \\
+\sum_n \sum_k|2J_{2n-1}(c_1)J_{2k}(c_2)|\cos[2k\omega_1+(2n—1)\omega]t \\
+\sum_n \sum_k|J_{2n}(c_1)J_{2k-1}(c_2)|\cos [(2k—1)\omega_1—2n\omega]t \\
\left.[/color]+\sum_n \sum_k|J_{2n}(c_1)J_{2k-1}(c_2)|\cos [(2k—1)\omega_1+2n\omega]t\right]
\end{split}\end{equation}

You should also correct the mistake that Hurkyl has pointed out.
 
but it's it very long brackets!
 
linderox said:
but it's it very long brackets!

Did I miss something? Is there only one set of brackets in your equation, or are there several? You should repeat the \right. \\ left. procedure for all sets of brackets. Note that this won't do anything to the appearance of the equation, but will just make it work.
 
Yes, Cristo! It works with your version,but What I have write - it is my long formula with a beginning bracket \left[ at the 1st line and
ended bracket \right] at the end of the whole formula

i don't understand what you meant... "You should repeat the \right. \\ left. procedure for all sets of brackets..." . maybe you can give some example?
cristo said:
You should repeat the \right. \\ left. procedure for all sets of brackets. Note that this won't do anything to the appearance of the equation, but will just make it work.
2) How better present this formula?
I want to see all lines connected to the left side of the page,but not like now...
 
Last edited:
This is how I'd typset it (I'm not really that familiar with "split")

Code:
\begin{eqnarray}
%\begin{split}
U&=& U_0\cos[c_1 \cos(\omega t) + c_2 cos(\omega_1 t) + \phi] \\
&=&U_0 \cos\phi\left[|J_0(c_1)J_0(c_2)| + \sum_n |2J_0(c_2 )J_{2n}(c_1)|\cos 2n\omega t \right.\\
&&+\sum_k|2J_0(c_1 )J_{2k}(c_2)|\cos 2k\omega_1 t + \sum_n\sum_k |2J_2n(c_1)J_{2k}(c_2)| \cos [2(k\omega_1 — n\omega)t] \\
&&+\sum_n \sum_k|2J_{2n}(c_1)J_{2k}(c_2)|\cos [2(k\omega_1 + n\omega)t] \\
&&+\sum_n \sum_k|J_{2n-1}(c_1)J_{2k-1}(c_2)|\cos[(2k —1)\omega_1—(2n — 1)\omega]t \\
&&\left.+\sum_n \sum_k|J_{2n-1}(c_1)J_{2k-1}(c_2)|\cos[(2k —1)\omega_1+(2n — 1)\omega]t\right] \\
&&+U_0\sin\phi\left[\sum_n |2J_0(c_2)J_{2n-1}(c_1)|\cos[(2n—1)\omega t\right. \\
&&+\sum_k | 2J_0(c_1)J_{2k-1}(c_2)|\cos[(2k — 1)\omega_1 t] \\
&&+\sum_n \sum_k|2J_{2n-1}(c_1)J_{2k}(c_2)|\cos[2k\omega_1—(2n—1)\omega]t \\
&&+\sum_n \sum_k|2J_{2n-1}(c_1)J_{2k}(c_2)|\cos[2k\omega_1+(2n—1)\omega]t \\
&&+\sum_n \sum_k|J_{2n}(c_1)J_{2k-1}(c_2)|\cos [(2k—1)\omega_1—2n\omega]t \\
&&\left.+\sum_n \sum_k|J_{2n}(c_1)J_{2k-1}(c_2)|\cos [(2k—1)\omega_1+2n\omega]t\right]
%\end{split}
\end{eqnarray}

i don't understand what you meant... "You should repeat the \right. \\ left. procedure for all sets of brackets..." . maybe you can give some example?
I just meant that you've got more than one set of brackets, so need to put more that one \left. and \right. in (I've done it above)
 
Wow! great Thank! but now i have a problem counting each line... how to remove everything except the label to the formula?
 
  • #10
Code:
\begin{eqnarray}
%\begin{split}
U&=& U_0\cos[c_1 \cos(\omega t) + c_2 cos(\omega_1 t) + \phi] \\
&=&U_0 \cos\phi\left[|J_0(c_1)J_0(c_2)| + \sum_n |2J_0(c_2 )J_{2n}(c_1)|\cos 2n\omega t \right.\nonumber \\
&&+\sum_k|2J_0(c_1 )J_{2k}(c_2)|\cos 2k\omega_1 t + \sum_n\sum_k |2J_2n(c_1)J_{2k}(c_2)| \cos [2(k\omega_1 — n\omega)t] \nonumber \\
&&+\sum_n \sum_k|2J_{2n}(c_1)J_{2k}(c_2)|\cos [2(k\omega_1 + n\omega)t]\nonumber \\
&&+\sum_n \sum_k|J_{2n-1}(c_1)J_{2k-1}(c_2)|\cos[(2k —1)\omega_1—(2n — 1)\omega]t \nonumber \\
&&\left.+\sum_n \sum_k|J_{2n-1}(c_1)J_{2k-1}(c_2)|\cos[(2k —1)\omega_1+(2n — 1)\omega]t\right] \nonumber \\
&&+U_0\sin\phi\left[\sum_n |2J_0(c_2)J_{2n-1}(c_1)|\cos[(2n—1)\omega t\right. \nonumber \\
&&+\sum_k | 2J_0(c_1)J_{2k-1}(c_2)|\cos[(2k — 1)\omega_1 t] \nonumber \\
&&+\sum_n \sum_k|2J_{2n-1}(c_1)J_{2k}(c_2)|\cos[2k\omega_1—(2n—1)\omega]t \nonumber \\
&&+\sum_n \sum_k|2J_{2n-1}(c_1)J_{2k}(c_2)|\cos[2k\omega_1+(2n—1)\omega]t \nonumber \\
&&+\sum_n \sum_k|J_{2n}(c_1)J_{2k-1}(c_2)|\cos [(2k—1)\omega_1—2n\omega]t \nonumber \\
&&\left.+\sum_n \sum_k|J_{2n}(c_1)J_{2k-1}(c_2)|\cos [(2k—1)\omega_1+2n\omega]t\right] \nonumber
%\end{split}
\end{eqnarray}
 
  • #11
Great thanks
 
  • #12
linderox said:
Great thanks

You're welcome :smile:
 
  • #13
hm... but why it does not work?
\be
\begin{split}
P(t)=cos\theta J_0(\alpha) + 2 \cos \theta \sum_{n=1}^\infty J_{2n}(\alpha)\cos[2n f_0 t +l_0] \\
&&-2\sin\theta \sum_{n=1}^\infty J_{2n-1}(\alpha)cos[(2n-1) f_0 t +l_0]
\end{split}
\label{equ:P_t_bessel}
\ee
 
  • #14
I'm not sure; like I said, I don't really know too much about the split command. I can see one problem, namely that you have no && in your first line. Here's another way to write it, along with the output:

Code:
\be
\begin{array}{ccc}
P(t)&=&cos\theta J_0(\alpha) + 2 \cos \theta \sum_{n=1}^\infty J_{2n}(\alpha)\cos[2n f_0 t +l_0] \\
&&-2\sin\theta \sum_{n=1}^\infty J_{2n-1}(\alpha)cos[(2n-1) f_0 t +l_0]
\end{array} 
\ee

\begin{array}{ccc}<br /> P(t)&amp;=&amp;cos\theta J_0(\alpha) + 2 \cos \theta \sum_{n=1}^\infty J_{2n}(\alpha)\cos[2n f_0 t +l_0] \\<br /> &amp;&amp;-2\sin\theta \sum_{n=1}^\infty J_{2n-1}(\alpha)cos[(2n-1) f_0 t +l_0]<br /> \end{array}
 
Last edited:
  • #15
I have a problem,
I have \left{ and a \righ} in two lines, I want them to be the same size, both big, but only one that has the summation infront of it is big

Can you please help?
thank you


\begin{eqnarray*}
\log p(\mathbf{x}_n,\mathbf{z}_n| \bm{\mu},\bm{\pi}) &=& \log \prod_{k=1}^K \left[\pi_k \, p(\mathbf{x}_n|\bm{\mu_k}) \right]^{z_{nk}} \\
&=& \sum_{k=1}^K z_{nk} \{ \log \pi_k + \log p(\mathbf{x}_n|\bm{\mu_k}) \} \\
&=& \sum_{k=1}^K z_{nk} \left\{ \log \pi_k \right. \\
&+& \left. \sum_{i=1}^D [x_{ni}\, \log \mu_{ki}+(1-x_{ni})\, \log (1-\mu_{ki})] \right\}
\end{eqnarray*}
 
  • #16
\left and \right can only be used on the same line. There are at least a couple of ways around this:

(1) Use a dummy \right. to pair with the \left{ on one line and a dummy \left. to pair with the \right} on the next line.

(2) Use bigl/bigr Bigl/Bigr biggl/biggr Biggl/Biggr in lieu of left/right.
 
Back
Top