Rono
- 54
- 0
Homework Statement
Prove that cosh (\frac{x}{2}) = \sqrt{\frac{cosh(x)+1}{2}}
Homework Equations
cosh(x) = \frac{e^{x}+e^{-x}}{2}
The Attempt at a Solution
\frac{\sqrt{e^{x}}+\sqrt{e^{-x}}}{2} \ast \frac{\sqrt{e^{x}}-\sqrt{e^{-x}}}{\sqrt{e^{x}}-\sqrt{e^{-x}}} \rightarrow \frac{e^{x}+e^{-x}}{2} \ast \frac{1}{\sqrt{e^{x}}-\sqrt{e^{-x}}} \rightarrow cosh(x) \ast \frac{1}{\sqrt{e^{x}}-\sqrt{e^{-x}}}
After that, I don't know what to do. Would be glad if somebody would tell me what I'm doing wrong or how to do it. Thanks.