Problems with a complex stress-energy tensor

Time Suspect
Messages
5
Reaction score
0
Hi , I am working with the following stress-energy tensor:

T\mu\nu=\partial\mu\phi\partial\nu\phi* - g\mu\nu(\nabla\mu\phi\nabla\mu\phi* - m2\phi\phi*)

Where \phi is a complex scalar of the form:
\phi(r,t) = \psi(r)eiwt

that obeys the Klein-gordon equation and \phi* is the complex conjugate, and g the metric tensor.

My problem is that i think this tensor is not symmetric as Ttr /= Trt by a minus sign on the term of the partial derivates.

Thanks a lot for reading.
 
Physics news on Phys.org
I think my problem wasn't really clear, this tensor is supposed to be a stress energy tensor and therefore it should be symmetric but I'm finding that it isn't Ttr /= Trt. I'm not sure if I'm differentiating wrong the complex scalar field or I think originally instead of partial derivatives they were covariant derivatives but since it is a scalar quantity I thought it wouldn't matter.

Hope this gives a better idea of the problem at hand.

Thanks a lot.
 
So why don't you just symmetrize it.

Or better yet, forget the "canonical" stress-energy tensor and use the correct and much simpler definition, Tμν = 2δL/δgμν whose calculation typically involves no taking of derivatives and is guaranteed to come out symmetrical. All you have to remember is that the Lagrangian density contains a factor √(-g) which must also be varied, and δ√(-g)/δgμν = 1/2 √(-g) gμν.
 
Thanks Bill_K, with that and the Klein-Gordon Lagrangian I found a Tensor which is indeed symmetric.

Thanks a lot.
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
Back
Top