Product of a Derivative and its Inverse

EconStudent
Messages
4
Reaction score
0

Homework Statement



For the functions:

x = r*cos(θ)
y = r*sin(θ)

Calculate dθ/dX * dX/dθ (considering θ as a function of x, y) and simplify.

The Attempt at a Solution



I believe this should always be 1, by definition (as the product of a derivative and its inverse). However, I don't know how to show this.

Solving the first function for θ, I get cos-1(x/r). The derivative of this is a relatively messy expression 1 over the product of r and a square root, and its being multiplied by something relatively simple (-r*sin(θ)). Why is it that this would simplify to 1?

I get that the negatives and the r's will cancel. So it simplifies to:

sin(θ) / √(1 - x2/r2)

But I can't get any further nor am I satisfied that this expression is or is not equal to 1. Thanks in advance.
 
Physics news on Phys.org
EconStudent said:

Homework Statement



For the functions:

x = r*cos(θ)
y = r*sin(θ)

Calculate dθ/dX * dX/dθ (considering θ as a function of x, y) and simplify.

The Attempt at a Solution



I believe this should always be 1, by definition (as the product of a derivative and its inverse). However, I don't know how to show this.

Solving the first function for θ, I get cos-1(x/r). The derivative of this is a relatively messy expression 1 over the product of r and a square root, and its being multiplied by something relatively simple (-r*sin(θ)). Why is it that this would simplify to 1?

I get that the negatives and the r's will cancel. So it simplifies to:

sin(θ) / √(1 - x2/r2)

But I can't get any further nor am I satisfied that this expression is or is not equal to 1. Thanks in advance.

Use that x/r=cos(theta). What does that make 1-(x/r)^2?
 
That's so clever, thank you. Substituting for x and squaring the top and bottom, we get sin2/1-cos2 which is just sin2/sin2.
 
EconStudent said:
That's so clever, thank you. Substituting for x and squaring the top and bottom, we get sin2/1-cos2 which is just sin2/sin2.
When you write fractional expressions in a line, and there are multiple terms in the top or bottom, USE PARENTHESES!

What you wrote would be reasonably interpreted as
\frac{sin^2(x)}{1} -cos^2(x)
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top