Projectile with friction on an inclined plane

AI Thread Summary
The discussion focuses on calculating the vertical height a 2.0 kg wood block reaches when launched up a 35-degree inclined ramp with an initial speed of 10 m/s, factoring in kinetic friction (μk = 0.20). The user attempts to find the height using kinematic equations and the net force, which includes the launch force and frictional force. An alternative approach suggests resolving forces parallel and perpendicular to the ramp for a clearer understanding of the motion. The calculations indicate that the block reaches a height of approximately 2.04 meters. The conversation emphasizes the importance of considering the forces acting on the block during its ascent and descent for accurate results.
kraaaaamos
Messages
20
Reaction score
0
Projectile motion with friction on an inclined plane -- PLEASE HELP!

Homework Statement



A 2.0 kg wood block is launched up a wooden ramp that is inclined at a 35* angle. The block’s initial speed is 10m/s. (Given that μk = 0.20)

a. What vertical height does the block reach above its starting point?
b. What speed does it have when it slides back down to its starting point?

Homework Equations





The Attempt at a Solution



FOR PART A:

I know that initial velocity (y component) is Vi = Vi sin theta
= 10 sin 35
= 5.73m/s
I know we use the equation:
Vf^2 = Vi^2 + 2a (deltaY)

So we need the value of a . . .

Fnet = ma, but we need to knwo the value of Fnet
Fnet = Flaunch - Fk?
We know that Fk = coeff (m)(g)
= 0.2 (2)(-9.8)
= -3.92N
Do we need to find teh value of the force of the launch?

I assumed that the value of the launch can be divided into the x-component and the y-component

vi(x) = Vicos theta
= 10 cos 35
= 8.19 m/s
vi(y) = Vi sin theta
= 10 sin 35
= 5.73 m/s

and if we plug in those values to get their overall magnitude

sqrt ( vi(y)^2 + vi(x)^2 )
sqrt [ (8.19)^2 + (5.73)^2 ]
sqrt [ 67.1 + 32.9]
sqrt (100)
= 10

Flaunch = 10 ( mass)
= 10 (2)
= 20N

Fnet = 20 - 3.92
= 16.08

Fnet = ma
16.08 = (2)a
a = 8.04 m/s2

Vf(y)^2 = Vi(y)^2 + 2(ay)(deltaY)
0^2 = 5.73^2 + 2 (-8.04)(deltay)
-32.8 = -16.08 (deltaY)
deltaY = 2.04m <<< FINAL ANSWER...

is that corect? Everything from the point where I suggested that Fnet = Flaunch - Fk . . . was something I deduced on my own. So I have no idea if it even makes sense.
 
Last edited:
Physics news on Phys.org
Instead of taking velocity component, take the component of weight along the inclined plane. When the block is going up Fnet = component of weight + Fk. If you want to launch the block up the inclined plane you have to do work against this force. Work done = Fnet X distance moved along the inclined plane. From that you can find the height. When the block is moving down, Fnet = Component of weight -Fk.
While going up work done = loss of KE
While going down work done = gain in KE
 
Last edited:
It is simpler to resolve velocities and forces parallel and perpendicular to the ramp rather than horizontal and vertical.

Reason: the block moves parallel to the ramp; the normal force (required to calculate the frictional force) is perpendicular to the ramp.

Using this approach I get this expression for the answer to a
\frac{10^{2}tan35}{2g(sin35 + 0.2cos35}
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top