Proof by induction for inequalities

Easty
Messages
19
Reaction score
0

Homework Statement



A sequence (Xn) is defined by X1=3 and Xn+1= (6Xn+1)/(2Xn+5) for all n\in N.

Prove by induction or otherwise that Xn-1 > 0 for all n \in N.


Homework Equations





The Attempt at a Solution



I'm not sure with what to do when dealing with inequalities in an induction proof. Initial i tried subing in the recursion formula when attempting the inductive step but i don't think it gets me anywhere. I'd really appreciate any guidance on where to start.

Thanks
 
Physics news on Phys.org
The proposition is clearly true for n = 1 and n = 2, so suppose it's true for n = k. I.e., that xk > 1.

For the induction step, you have to show that xk + 1 > 1.

xk + 1 = (6xk + 1)/(2xk + 5)

Carry out the division to get something that you can show is greater than 1. Is that enough of a start?
 
It is easier if you write it as x_n > 1 instead of x_n - 1 >0.

Suppose x_n > 1 [Show that x_(n+1) > 1]

Mult both sides by 4.
Add 2x to both sides.
Add 1 to both sides.
Divide both sides by the right side quantity (which is > 0, why?)

And you should see x_(n+1) > 1.
 
Thanks a lot for the help. Its such a simple solution, no wonder i didnt get it
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top