Assuming that \displaystyle \sup(\text{S})=M\ :Artusartos said:Homework Statement
I attached my question and answer...
https://www.physicsforums.com/attachment.php?attachmentid=54064&d=1355849917
Homework Equations
The Attempt at a Solution
SammyS said:Assuming that \displaystyle \sup(\text{S})=M\ :
If \displaystyle \sup(c\text{S})\ne cM\,,\ \text{ then either }\ \sup(c\text{S})< cM\ \text{ or } \sup(c\text{S})> cM\ .
If \displaystyle \ \sup(c\text{S})> cM\,,\ \text{ then there exists}\ cs_0\in c\text{S}\ \text{ such that }\ cs_0>cM\ .\ \ \ ...
That should quickly lead to a contradiction.
Then do the other case.