Proof divergence of vector potential = 0

AI Thread Summary
The discussion focuses on proving that the divergence of the vector potential A is zero, expressed mathematically as ∇·A = 0. The user attempts to manipulate the integral involving the current density J and the distance R, but struggles to show that the divergence equals zero. Key points include the use of the identity ∇·R = -∇'R' and the suggestion to integrate by parts, leading to terms that vanish under reasonable assumptions. The conversation highlights that the choice of ∇·A = 0 is a convenience in the context of Maxwell's equations, ultimately relating to the Poisson equation for A. The clarification on the denominator in the integrand emphasizes the importance of proper notation in vector calculus.
grantdenbrock
Messages
2
Reaction score
0

Homework Statement


I need to show that $$\del*\vec{A(\vec{r})}=\frac{\mu}{4\pi}\int{\frac{\vec{J{vec\r'}}}{\vec{R}}}d\tau=0$$
where A is the vector potential and R refers to "script r" or (r-r') where r is source point of charge and r' is the measurement point. tau refers to a volume integral. I have tried many times now to show this by bringing del into the integrand using product rules and the fact that $$\delR=-\del'R'$$ but cannot make it equal zero. I am not sure if there is something I have overlooked or another method to use but any help or suggestions are much appreciated!

Homework Equations


del*R=-del'R' must be used at some point[/B]

The Attempt at a Solution


My solution thus far goes like this (Sorry My latex is awful so I will just write out my method)
1) bring Del into the integrand
2) using product rule rule of dot products expand into 2 terms each with its own dot product
3) del*J' =0 since del operates on unprimed coordinates
4) J' del*1/R does not equal zero therefore integrand does not equal zero :/[/B]
 
Physics news on Phys.org
I should add that its divergence of A, meaning del dot A =0 . Also, I am aware of the other thread regarding this problem however that thread does not contain any useful information or attempt a solution.
 
From what you've said, you should be able to show that
$$ \nabla \cdot \mathbf{A}(\mathbf{x}) = - \frac{\mu}{4\pi} \int \mathbf{J}(\mathbf{x}') \cdot \nabla' \left(\frac{1}{|\mathbf{x}- \mathbf{x}'|} \right) d\mathbf{x}'.$$
The next step would be to integrate by parts and argue that both terms vanish independently subject to reasonable assumptions.
 

You write "... r is source point of charge ..." but don't you mean "source point of current density"? The integral certainly looks like the magnetic vector potential, especially with the μ in it ... based on that assumption I offer the following:

∇⋅A
= 0 is not an identity. It is chosen as a convenience.
We define A as H = ∇ x A.
By Maxwell, ∇ x H = j (j = current density).
So j = ∇ x (∇ x A).
But by a mathematical identity, this can be rewritten as
j = ∇(∇⋅A) - ∇2A
So we choose ∇⋅A = 0, giving
2A = -j
i.e. the Poisson equation, the solution for which is your integral. BTW the denominator in the integrand should read |R|. You can't divide one vector by another, at least not to my knowledge.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top