nobahar
- 482
- 2
f(x) = 2^x \left \left
f(kx) = 2^(kx) \left \left
b = 2^k \left \left
b^x = 2^(kx) \left \left
b^x = f(kx)
\frac{d}{dx}(b^x) = \frac{d}{dx}(f(kx)) = \frac{d}{dx}(2^(kx)) (1)
\frac{d}{dx}(f(kx)) = k.f'(kx) (2)
I can't see how step (1) gets to step (2).
Because I thought:
\frac{d}{dx}(f(kx)) = k.\frac{d}{dx}(f(x))
f(kx) = 2^(kx) \left \left
b = 2^k \left \left
b^x = 2^(kx) \left \left
b^x = f(kx)
\frac{d}{dx}(b^x) = \frac{d}{dx}(f(kx)) = \frac{d}{dx}(2^(kx)) (1)
\frac{d}{dx}(f(kx)) = k.f'(kx) (2)
I can't see how step (1) gets to step (2).
Because I thought:
\frac{d}{dx}(f(kx)) = k.\frac{d}{dx}(f(x))