I ran into this proof in one of my textbooks and was wondering if anybody could lead me in the right logical direction. I can prove the first-differentiable continuous case but the infinity case throws me off. Please help if you can!(adsbygoogle = window.adsbygoogle || []).push({});

Thanks!

Suppose [tex]\left\{f}\right\}\subset C_{\infty}\left(\left[a,b\right]\right)[/tex] such that [tex]\left{f\right}_{n}[/tex] converges uniformly to some [tex]\left{f\right}\in C_{\infty}\left(\left[a,b\right]\right)[/tex]. Prove that:

[tex]\int^a_b\left{f\right}_{n}\left(x\right)dx \rightarrow \int^a_b\left{f\right}\left(x\right)dx[/tex]

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Proof Involving Convergence

**Physics Forums | Science Articles, Homework Help, Discussion**