Proof of a^{\frac{p-1}{2}}=-1 mod p

  • Thread starter Thread starter yavanna
  • Start date Start date
  • Tags Tags
    Arithmetic
yavanna
Messages
10
Reaction score
0
If p is a prime and a an integer coprime with p, why is

a^{\frac{p-1}{2}}\equiv -1 mod p ?
 
Physics news on Phys.org
It's not true. Consider p=5 and a=4.
 
Yes, i was trying some examples and I think it only works with primitive roots... But why?
 
Are you aware of Fermat's little theorem?? Try to use that...
 
Hah, that's basically the definition of a primitive root. :smile:

Any co-prime "a" has a "period" indicating how soon it gets to "1".
Fermat's little theorem guarantees that (p-1) will bring it back to "1".
The actual period will be a divider of (p-1).
Only for primitive roots, the period is exactly (p-1).
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top