Jyan
- 36
- 2
Homework Statement
I'm working on some MIT OCW (http://ocw.mit.edu/courses/electric...y-fall-2008/assignments/MIT6_436JF08_hw01.pdf). I've attempted problem #5, just looking for some comments on the quality / validity of my proof.
Homework Equations
Show: P(\bigcup_{i=1}^\infty A_i) \le \sum_{i=1}^\infty P(A_i)
Where P(ω) is a probability measure for the event ω.
The Attempt at a Solution
The intuition is that if there are shared elements in any of the sets (their intersection is not empty) then some stuff will be "counted twice".
I prove this by induction, starting with the base case:
P(A_1 \cup A_2) \le P(A_1) + P(A_2) Proof:
Let \space B = A_1 \cap A_2 Then,
A_1 \cup A_2 = (A_1 \setminus B) \cup (A_2 \setminus B) \cup B
Since (A_1 \setminus B) \cap (A_2 \setminus B) \cap B = \emptyset
P(A_1 \cup A_2) = P(A_1 \setminus B) + P(A_2 \setminus B) + P(B)
We also have
P(A_1) = P(A_1 \setminus B) + P(B) And,
P(A_2) = P(A_2 \setminus B) + P(B)
Therefore,
P(A_1) + P(A_2) = P(A_1 \setminus B) + P(A_2 \setminus B) + 2P(B) \ge P(A_1 \cup A_2)
Which proves the base case for induction.
Now assume
P(\bigcup_{i=1}^n) \le \sum_{i=1}^nP(A_i)
Using the base case,
P((\bigcup_{i=1}^n A_i) \cup A_{n+1}) \le \sum_{i=1}^nP(A_i) + P(A_{n+1})
\therefore P(\bigcup_{i=1}^{n+1}A_i) \le \sum_{i=1}^{n+1}P(A_i)
The result follows by induction QED.