kostas
- 6
- 0
Homework Statement
Prove that
<br /> \int cos^mxdx = \frac{cos^{m-1}x sinx}{m} + \frac{m-1}{m}\int cos^{m-2}xdx<br />
Homework Equations
<br /> \int f(x)g'(x) = f(x)g(x) - \int g(x)f'(x) dx<br />
The Attempt at a Solution
Going through any of the integrals provides constants that seem to be a problem in proving the above.
Starting from the left side and applying the integral product rule (see 2. -- not sure how the rule is called in English!) we get:
<br /> \int cos^mxdx = \int cos^{m-1}x \cdot cosx dx<br />
With f(x) = cos^{m-1}x, g'(x) = cosx, g(x) = sinx, f'(x) = (m-1)cos^{m-2}x we get:
<br /> cos^{m-1}x \cdot sinx - \int sinx(m-1)cos^{m-2}x dx = cos^{m-1}x \cdot sinx - (m-1)\int cos^{m-2}x \cdot sinx dx<br />
With f(x) = cos^{m-2}x, g'(x) = sinx, g(x) = -cosx, f'(x) = (m-2)cos^{m-3}x we get:
<br /> cos^{m-1}x \cdot sinx - (m-1)\left( cos^{m-2}x (-cosx) - \int (-cosx)(m-2)cos^{m-3}x dx \right) = <br />
<br /> cos^{m-1}x \cdot sinx - (m-1)\left( -cos^{m-1}x + (m-2)\int cos^{m-2}x dx \right) = <br />
Any ideas on how to continue?