Proof of equation with integrals

  • Thread starter Thread starter kostas
  • Start date Start date
  • Tags Tags
    Integrals Proof
kostas
Messages
6
Reaction score
0

Homework Statement


Prove that
<br /> \int cos^mxdx = \frac{cos^{m-1}x sinx}{m} + \frac{m-1}{m}\int cos^{m-2}xdx<br />


Homework Equations


<br /> \int f(x)g&#039;(x) = f(x)g(x) - \int g(x)f&#039;(x) dx<br />

The Attempt at a Solution


Going through any of the integrals provides constants that seem to be a problem in proving the above.
Starting from the left side and applying the integral product rule (see 2. -- not sure how the rule is called in English!) we get:

<br /> \int cos^mxdx = \int cos^{m-1}x \cdot cosx dx<br />
With f(x) = cos^{m-1}x, g&#039;(x) = cosx, g(x) = sinx, f&#039;(x) = (m-1)cos^{m-2}x we get:

<br /> cos^{m-1}x \cdot sinx - \int sinx(m-1)cos^{m-2}x dx = cos^{m-1}x \cdot sinx - (m-1)\int cos^{m-2}x \cdot sinx dx<br />

With f(x) = cos^{m-2}x, g&#039;(x) = sinx, g(x) = -cosx, f&#039;(x) = (m-2)cos^{m-3}x we get:

<br /> cos^{m-1}x \cdot sinx - (m-1)\left( cos^{m-2}x (-cosx) - \int (-cosx)(m-2)cos^{m-3}x dx \right) = <br />

<br /> cos^{m-1}x \cdot sinx - (m-1)\left( -cos^{m-1}x + (m-2)\int cos^{m-2}x dx \right) = <br />

Any ideas on how to continue?
 
Physics news on Phys.org
In your first parts integration you should have f'(x)=(m-1)*cos(x)^(m-2)*(-sin(x)). You forgot to use the chain rule. That gives you a sin(x)^2 in the parts integral. Change it to 1-cos(x)^2 and rearrange.
 
Dick said:
In your first parts integration you should have f'(x)=(m-1)*cos(x)^(m-2)*(-sin(x)). You forgot to use the chain rule. That gives you a sin(x)^2 in the parts integral. Change it to 1-cos(x)^2 and rearrange.

Ah..so true :) Thank you!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top