Proof of existence of opposite roots in semisimple algebras?

naima
Gold Member
Messages
936
Reaction score
54
Happy new year from France.

I am reading books on elementary particle and i see that their
gauge bosons may be neutral or have opposite charge. They live
in semisimple Lie algebras. So I searched in math books how to prove
that in a semisimple Lie algebra if α is a root so is -α.
I found that it is related to the fact that the killing form is not degenerate.

Could you comment this:

If α is a root the space gα is not nul and orthogonal to Ʃλ ≠- α g λ. Since the Killing form is non degenerate g must be ≠ 0 then -α is a root.

Here g λ = {x ∈ g |∃n ∈ N ∀h ∈ h , (π(h) − λ(h))n (x) = 0}.
 
Physics news on Phys.org
That is certainly a correct proof, but be sure that you're not using anything you're not allowed to (i.e. that you're not being circular).
 
I found it in a book.

the main thing is to see that [gα , gβ ] ⊂ gα+β
by definition the killing form K(x,y) = trace (ad x ad y) where ad y (z) = [y,z].

We have ad x ad y (z) = [x,[y,z]]
if x ∈ g α y ∈ g β and z ∈ g γ then [x,[y,z]] is in g α+β+γ
so if α+β not null gγ is mapped on another space and does not participate to the trace (outside the diagonal)
x is orthogonal to y (K =0) if β not = -α
it cannot be orthogonal to all the vectors (K not degenerate) so -α is a root.

Could you give me an example where gα (eigenvectors) is strictly included in gα
 
For a complex semisimple g, what you denote by g^\alpha ("generalized" eigenvectors) is always equal to g_\alpha.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top