Proof of Wheatstone bridge equation

AI Thread Summary
The discussion centers on proving the equation ΔU = (R1R4 / (R1 + R4)²) * ((ΔR1 / R1) - (ΔR2 / R2) + (ΔR3 / R3) - (ΔR4 / R4))E, which relates to the Wheatstone bridge. Participants explore the derivation by analyzing voltage dividers and the impact of resistance changes on voltage. The conversation highlights the importance of correctly interpreting ΔU as a change in potential difference due to resistance variations. Through calculations involving partial derivatives, a consensus emerges on the correct formulation of the equation. The final expression aligns with the original equation, confirming its validity.
whatdoido
Messages
48
Reaction score
2

Homework Statement



Prove the following equation:

## \Delta U=\frac {R_1R_4}{(R_1+R_4)^2}(\frac {\Delta R_1}{R_1}-\frac {\Delta R_2}{R_2}+\frac{\Delta R_3}{R_3}-\frac{\Delta R_4}{R_4})E##

This is used in Wheatstone bridge

whets.png


Homework Equations


[/B]
U=RI

The Attempt at a Solution


This has been a real head-scratcher

Two voltage dividers can be found for starters. Voltage's direction is assumed to be clockwise

##V_{in1}=I_2(R_2+R_3)##

##I_2=\frac{V_{in1}}{R_2+R_3}##

##V_{out1}=I_2R_3##

##V_{out1}=V_{in1}\frac{R_3}{R_2+R_3}##

Similarly:

##V_{out2}=V_{in1}\frac{R_4}{R_1+R_4}##

##V_G## is voltage between A and B

##V_{out1}-V_{out2}=V_G##

##V_{in1}\frac{R_3}{R_2+R_3}-V_{in1}\frac{R_4}{R_1+R_4}=V_G##

##V_{in1}(\frac{R_3}{R_2+R_3}-\frac{R_4}{R_1+R_4})=V_G##

##V_{in1}=E##

##V_G=\Delta U## so then

##E(\frac{R_3}{R_2+R_3}-\frac{R_4}{R_1+R_4})=\Delta U##

I have calculated voltages in different circuits and tried to think this problem in different ways, but the real problem is that how is ##\Delta R_i## inserted into equations. Assumption goes that it is added by ##R_i+\Delta R_i##. Maybe that is incorrect?

Help is very much appreciated!

edit: Misspelling corrected

Also particularizing that ##\Delta R_i## is a change in one resistance
 

Attachments

  • whets.png
    whets.png
    2.8 KB · Views: 3,775
Last edited:
Physics news on Phys.org
whatdoido said:
that ##\Delta R_i## is a change in one resistance
Which suggests that the Δ in ΔU refers to the consequent change in U, not to the potential difference between A and B at a given set of R values.
 
haruspex said:
Which suggests that the Δ in ΔU refers to the consequent change in U, not to the potential difference between A and B at a given set of R values.
Yes that is true, ##\Delta U## is zero before the change of resistances.
 
whatdoido said:
Yes that is true, ##\Delta U## is zero before the change of resistances.
So this equation:
##E(\frac{R_3}{R_2+R_3}-\frac{R_4}{R_1+R_4})=\Delta U##
Should read
##E(\frac{R_3}{R_2+R_3}-\frac{R_4}{R_1+R_4})=U##
and you need a different expression for ##\Delta U##.
 
Right now I'm trying to figure out why this would not be possible:

##E(\frac{R_3+\Delta R_3}{R_2+\Delta R_2+R_3+\Delta R_3}-\frac{R_4+\Delta R_4}{R_1+\Delta R_1+R_4+\Delta R_4})=\Delta U##

I can simplify it a bit, but is this the right way to go
 
whatdoido said:
Right now I'm trying to figure out why this would not be possible:

##E(\frac{R_3+\Delta R_3}{R_2+\Delta R_2+R_3+\Delta R_3}-\frac{R_4+\Delta R_4}{R_1+\Delta R_1+R_4+\Delta R_4})=\Delta U##

I can simplify it a bit, but is this the right way to go
I do not see how you get that. It looks wrong.
You have an equation for U (second eqn in post #4). Write out the corresponding eqn for U+ΔU.
 
haruspex said:
I do not see how you get that. It looks wrong.
You have an equation for U (second eqn in post #4). Write out the corresponding eqn for U+ΔU.
Now that I thought about it, simply adding the change does not make so much sense.

But then I got an idea to take partial derivates since it is about change. Adding those partial derivates together should give the overall change in voltage.

##U=E(\frac{R_3}{R_2+R_3}-\frac{R_4}{R_1+R_4})##

Seems like marking ##U## as ##U_{BA}## is needed since I took potential difference with ##V_{out1}-V_{out2}=V_G##

##U_{BA}=(\frac{R_3}{R_2+R_3}-\frac{R_4}{R_1+R_4})E##

This should be legal: ##\Delta U_{BA}=dU_{BA}##

Thus ##dU_{BA}=\frac {\partial} {\partial R_1}U_{BA}\Delta R_1+\frac {\partial} {\partial R_2}U_{BA}\Delta R_2+\frac {\partial} {\partial R_3}U_{BA}\Delta R_3+\frac {\partial} {\partial R_4}U_{BA}\Delta R_4##

Solving partial derivates each:

##\frac {\partial} {\partial R_1}U_{BA}\Delta R_1=\frac {\partial} {\partial R_1}(\frac{R_3}{R_2+R_3}-\frac{R_4}{R_1+R_4})E\Delta R_1=-\frac {R_4}{(R_1+R_4)^2}E\Delta R_1##

##\frac {\partial} {\partial R_2}U_{BA}\Delta R_2=\frac {\partial} {\partial R_2}(\frac{R_3}{R_2+R_3}-\frac{R_4}{R_1+R_4})E\Delta R_2=\frac{R_3}{(R_2+R_3)^2}E\Delta R_2##

##\frac {\partial} {\partial R_3}U_{BA}\Delta R_3=\frac {\partial} {\partial R_3}(\frac{R_3}{R_2+R_3}-\frac{R_4}{R_1+R_4})E\Delta R_3=-\frac{R_2}{(R_2+R_3)^2}E\Delta R_3##

##\frac {\partial} {\partial R_4}U_{BA}\Delta R_4=\frac {\partial} {\partial R_4}(\frac{R_3}{R_2+R_3}-\frac{R_4}{R_1+R_4})E\Delta R_4=\frac{R_1}{(R_1+R_4)^2}E\Delta R_4##

##dU_{BA}=-\frac {R_4}{(R_1+R_4)^2}E\Delta R_1+\frac{R_3}{(R_2+R_3)^2}E\Delta R_2-\frac{R_2}{(R_2+R_3)^2}E\Delta R_3+\frac{R_1}{(R_1+R_4)^2}E\Delta R_4##

##dU_{BA}=(-\frac{R_4}{R_1(1+\frac{R_4}{R_1})^2}\frac{\Delta R_1}{R_1}+\frac{R_3}{R_2(1+\frac{R_4}{R_1})^2}\frac{\Delta R_2}{R_2}-\frac{R_2}{R_3(1+\frac{R_1}{R_4})^2}\frac{\Delta R_3}{R_3}+\frac{R_1}{R_4(1+\frac{R_1}{R_4})^2}\frac{\Delta R_4}{R_4})E##

I just kept playing with the identity ##\frac{R_2}{R_3}=\frac{R_1}{R_4}## and I got:

##dU_{BA}=\frac{R_1R_4}{(R_1+R_4)^2}(-\frac{\Delta R_1}{R_1}+\frac{\Delta R_2}{R_2}-\frac{\Delta R_3}{R_3}+\frac{\Delta R_4}{R_4})E##

It has wrong signs because of ##V_{out1}-V_{out2}=V_G##

So I think the equation is about ##U_{AB}##

##\Delta U_{AB}=dU_{AB}=-dU_{BA}=-\frac{R_1R_4}{(R_1+R_4)^2}(-\frac{\Delta R_1}{R_1}+\frac{\Delta R_2}{R_2}-\frac{\Delta R_3}{R_3}+\frac{\Delta R_4}{R_4})E##

##=\frac{R_1R_4}{(R_1+R_4)^2}(\frac{\Delta R_1}{R_1}-\frac{\Delta R_2}{R_2}+\frac{\Delta R_3}{R_3}-\frac{\Delta R_4}{R_4})E##
 
Looks good.
 
Back
Top