sdrmybrat
- 1
- 0
Prove that:
∀ n€N [(the) sum of an (infinite?) series (a1,+a2,...+,an)] (where a_{n}=\frac{n}{(n+1)!})
\sum \frac{n}{(n+1)!} (is equal to/gives/yields) = 1 - \frac{1}{(n+1)!}
Prove that:
∀ n \in N \sum \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!}
THX in advance
∀ n€N [(the) sum of an (infinite?) series (a1,+a2,...+,an)] (where a_{n}=\frac{n}{(n+1)!})
\sum \frac{n}{(n+1)!} (is equal to/gives/yields) = 1 - \frac{1}{(n+1)!}
Prove that:
∀ n \in N \sum \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!}
THX in advance